精英家教网 > 高中数学 > 题目详情
以点(1,-1)为中点的抛物线y2=8x的弦所在的直线方程为(  )
A.x-4y-3=0B.x+4y+3=0C.4x+y-3=0D.4x+y+3=0
此弦不垂直于X轴,故设点(1,-1)为中点的抛物线y2=8x的弦的两端点为A(x1,y1)B(x2,y2
得到yi2=8x1,y22=8x2
两式相减得到(y1+y2)(y1-y2)=8(x1-x2
∴k=
y1-y2
x1-x2
=-4
∴直线方程为y+1=-4(x-1),即4x+y-3=0
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(  )
A、ρ=2cos(θ-
π
4
)
B、ρ=2sin(θ-
π
4
)
C、ρ=2cos(θ-1)
D、ρ=2sin(θ-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在xoy平面上有一系列点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对每个正整数n,以点Pn为圆心的⊙Pn与x轴及射线y=
3
x,(x≥0)都相切,且⊙Pn与⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求证:数列{xn}是等比数列,并求数列{xn}的通项公式;
(2)设数列{an}的各项为正,且满足an
xnan-1
xn+an-1
a1
=1,
求证:a1x1+a2x2+a3x3+…+anxn
5
4
-
1
3n-1
,(n≥2)
(3)对于(2)中的数列{an},当n>1时,求证:(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]>
4
5
-
1
1+an+
a
2
n
+…+
a
n
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都二模)在平面直角坐标系xOy中,Rt△ABC的斜边BC恰在x轴上,点B(-2,0),C(2,0)且AD为BC边上的高.
(I)求AD中点G的轨迹方程;
(Ⅱ)若一直线与(I)中G的轨迹交于两不同点M、N,且线段MN恰以点(-1,
1
4
)为中点,求直线MN的方程;
(Ⅲ)若过点(1,0)的直线l与(I)中G的轨迹交于两不同点P、Q试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出以下判断:
(1)b=0是函数f(x)=ax2+bx+c为偶函数的充要条件;
(2)椭圆
x2
4
+
y2
3
=1
中,以点(1,1)为中点的弦所在直线方程为x+2y-3=0;
(3)回归直线
y
=
b
x+
a
必过点(
.
x
.
y
)

(4)如图,在四面体ABCD中,设E为△BCD的重心,则
AE
=
AB
+
1
2
AC
+
2
3
AD

(5)双曲线
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的两焦点为F1,F2,P为右支是异于右顶点的任一点,△PF1F2的内切圆圆心为T,则点T的横坐标为a.其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案