精英家教网 > 高中数学 > 题目详情

已知向量=(sin,1),=(cos,cos2)
(1)若·=1,求cos(-x)的值;
(2)记f(x)=·,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

(1)-.(2) (1,).

解析试题分析:(1)∵·=1,即sincos+cos2=1,
sincos=1,
∴sin()=.
∴cos(-x)=cos(x-)=-cos(x+)=-[1-2sin2()]
=2·()2-1=-.
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC.
∴2sinAcosB-cosBsinC=sinBcosC,
∴2sinAcosB=sin(B+C),
∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=,B=,∴0<A<.
<sin()<1.
又∵f(x)=·=sin()+
∴f(A)=sin()+.
故函数f(A)的取值范围是(1,).
考点:本题综合考查了向量、三角函数及正余弦定理
点评:三角与向量是近几年高考的热门题型,这类题往往是先进行向量运算,再进行三角变换

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且函数的图象相邻两条对称轴之间的距离为.
(Ⅰ)求的对称中心;
(Ⅱ)当时,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)化简
(2)若,且是第二象限角,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简:(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.
(1)若A点的坐标为,求的值;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)如图,已知是坐标平面内的任意两个角,且,证明两角差的余弦公式:
(2)已知,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点

(1)若是半径的中点,求线段的大小;
(2)设,求△面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求的增区间;
(2)已知△ ABC内接于半径为6的圆,内角A、B、C的对边分别
,若,求边长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的定义域;
(Ⅱ)若角在第一象限且,求

查看答案和解析>>

同步练习册答案