精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)= (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

【答案】
(1)解:∵f(x)为定义在[﹣1,1]上的奇函数,且f(x)在x=0处有意义,

∴f(0)=0,即f(0)= =1﹣a=0.

∴a=1.

设x∈[0,1],则﹣x∈[﹣1,0].

∴f(﹣x)= =4x﹣2x

又∵f(﹣x)=﹣f(x)

∴﹣f(x)=4x﹣2x

∴f(x)=2x﹣4x


(2)解:当x∈[0,1],f(x)=2x﹣4x=2x﹣(2x2

∴设t=2x(t>0),则f(t)=t﹣t2

∵x∈[0,1],∴t∈[1,2].

当t=1时,取最大值,最大值为1﹣1=0


【解析】(1求出a=1;设x∈[0,1],则﹣x∈[﹣1,0],利用条件,即可写出f(x)在[0,1]上的解析式;(2利用换元法求f(x)在[0,1]上的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=
(1)求f(log2 )的值;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等关系正确的是( )
A.( <34<( 2
B.( 2<( <34
C.(2.5)0<( 2.5<22.5
D.( 2.5<(2.5)0<22.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)画出f(x)的图象(不写过程)并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+x,对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 满足约束条件若目标函数的最小值为,则实数的值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.

(1)求抛物线的方程;

(2)过的直线交抛物线两点,且,点轴上一点,且,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx﹣1,若曲线y=f(x)在点(2,f(2))处的切线与直线2x+y﹣1=0垂直.
(1)求a的值;
(2)函数g(x)=f(x)﹣m(x﹣1)(m∈R)恰有两个零点x1 , x2(x1<x2),求函数g(x)的单调区间及实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的函数 ,若关于x的方程f2(x)+bf(x)+c=0有三个不同的解x1 , x2 , x3 , 则 的值是(
A.1
B.3
C.5
D.10

查看答案和解析>>

同步练习册答案