【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)= ﹣ (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
【答案】
(1)解:∵f(x)为定义在[﹣1,1]上的奇函数,且f(x)在x=0处有意义,
∴f(0)=0,即f(0)= ﹣ =1﹣a=0.
∴a=1.
设x∈[0,1],则﹣x∈[﹣1,0].
∴f(﹣x)= ﹣ =4x﹣2x.
又∵f(﹣x)=﹣f(x)
∴﹣f(x)=4x﹣2x.
∴f(x)=2x﹣4x
(2)解:当x∈[0,1],f(x)=2x﹣4x=2x﹣(2x)2,
∴设t=2x(t>0),则f(t)=t﹣t2.
∵x∈[0,1],∴t∈[1,2].
当t=1时,取最大值,最大值为1﹣1=0
【解析】(1求出a=1;设x∈[0,1],则﹣x∈[﹣1,0],利用条件,即可写出f(x)在[0,1]上的解析式;(2利用换元法求f(x)在[0,1]上的最大值.
科目:高中数学 来源: 题型:
【题目】下列不等关系正确的是( )
A.( ) <34<( )﹣2
B.( )﹣2<( ) <34
C.(2.5)0<( )2.5<22.5
D.( )2.5<(2.5)0<22.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)画出f(x)的图象(不写过程)并求其值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.
(1)求抛物线的方程;
(2)过的直线交抛物线于两点,且,点为轴上一点,且,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx﹣1,若曲线y=f(x)在点(2,f(2))处的切线与直线2x+y﹣1=0垂直.
(1)求a的值;
(2)函数g(x)=f(x)﹣m(x﹣1)(m∈R)恰有两个零点x1 , x2(x1<x2),求函数g(x)的单调区间及实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义域为R的函数 ,若关于x的方程f2(x)+bf(x)+c=0有三个不同的解x1 , x2 , x3 , 则 的值是( )
A.1
B.3
C.5
D.10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com