精英家教网 > 高中数学 > 题目详情
抛物线在点           处的切线平行于直线
(2,4)

试题分析:设切点坐标为因为切线平行于直线,所以
点评:求曲线的切线,首先想到的应该是利用导数求切线的斜率,当不知道切点坐标时,先设出切点再求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正方形ABCD 对角线AC所在直线方程为 .抛物线过B,D两点
(1)若正方形中心M为(2,2)时,求点N(b,c)的轨迹方程。
(2)求证方程的两实根满足

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆C1的离心率为,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,     求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线的右焦点为,左右顶点分别为,过且与双曲线的一条渐近线平行的直线与另一条渐近线相交于,若恰好在以为直径的圆上,则双曲线的离心率为________ ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的上、下顶点分别为,左、右焦点分别为,若四边形是正方形,则此椭圆的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且

(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在坐标原点的椭圆,焦点在x轴上,焦距为4,离心率为,则该椭圆的方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.

查看答案和解析>>

同步练习册答案