精英家教网 > 高中数学 > 题目详情
6.直线l:y=kx与双曲线C:x2-y2=2交于不同的两点,则斜率k的取值范围是(  )
A.(0,1)B.$(-\sqrt{2},\sqrt{2})$C.(-1,1)D.[-1,1]

分析 求出双曲线的渐近线方程,然后求解即可.

解答 解:双曲线C:x2-y2=2的渐近线方程为:y=±x,
直线l:y=kx与双曲线C:x2-y2=2交于不同的两点,则斜率k的取值范围是(-1,1).
故选:C.

点评 本题考查双曲线方程的简单性质以及直线与双曲线的位置关系的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ex+ae-x为偶函数,若曲线y=f(x)的一条切线的斜率为$\frac{3}{2}$,则切点的横坐标等于(  )
A.ln2B.2ln2C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四组函数中,表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=lgx2,g(x)=2lgx
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x-1}$,g(x)=$\sqrt{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系为(  )
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(4)<f(2)<f(1)D.f(4)<f(1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知幂函数f(x)=(m2-m-1)xm在(0,+∞)上是增函数,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{3}$,过左焦点F1(-c,0)作圆x2+y2=a2的切线,切点为E,延长F1E交抛物线y2=4cx于P,Q两点,则|PE|+|QE|的值为(  )
A.$10\sqrt{2}a$B.10aC.$(5+\sqrt{5})a$D.$12\sqrt{2}a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若0≤x<π,则满足方程tan(4x-$\frac{π}{4}$)=1的角的集合是{$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知平面直角坐标系中的动点M与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(Ⅰ)求动点M的轨迹方程,并说明轨迹是什么图形;
(Ⅱ)记动点M的轨迹为C,过点P(-2,3)的直线l被C所截得的弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.关于函数y=log4(x2-2x+5)有以下4个结论:其中正确的有①②③.
①定义域为R;                   ②递增区间为[1,+∞);
③最小值为1;                    ④图象恒在x轴的下方.

查看答案和解析>>

同步练习册答案