精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)求函数的单调区间,并判断函数的奇偶性;
(Ⅱ)若不等式的解集是集合的子集,求实数的取值范围.
(Ⅰ) 上是单调增函数,在上是单调减函数、偶函数
(Ⅱ)  
(Ⅰ),
时,
上是单调增函数,在上是单调减函数………………………5分

上的偶函数………………………3分
(Ⅱ)由
从而不等式等价于:…………………………………………………7分
又不等式的解集为的子集,
,∴
…………………………………………………………………8分
当△<0时,不等式的解集为空集,满足条件,即成立;
当△=0时,,此时成立;
当△>0时,,
,则

此时有:………………………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的导数
(2)求证:不等式上恒成立;
(3)求的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,且函数的图象关于原点对称,其图象在处的切线方程为 (1)求的解析式;  (2)是否存在区间使得函数的定义域和值域均为,且其解析式为f(x)的解析式?若存在,求出这样的一个区间[m,n];若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
   (1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数 上的最小值;
(Ⅲ)对一切的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,且在x=-1处取得极值.
(Ⅰ)求a的值;
(Ⅱ)求函数上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在上的奇函数处取得极值.
(Ⅰ)求函数的解析式;
  (Ⅱ)试证:对于区间上任意两个自变量的值,都有成立;
(Ⅲ)若过点可作曲线的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:在函数的图象上,以为切点的切线的倾斜角为
(I)求的值;
(II)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。

查看答案和解析>>

同步练习册答案