精英家教网 > 高中数学 > 题目详情

,曲线在点处的切线与直线垂直.
(1)求的值;
(2) 若恒成立,求的范围.
(3)求证:

(1) 0. (2)  .
(3) 结合(2)时,成立.令
得到

  
累加可得.

解析试题分析:(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.
(3) 结合(2)时,成立.令得到

  
累加可得.
试题解析:(1)            2分
由题设
.                    4分
(2) ,,即
,即.
                   6分
①若,这与题设矛盾.         8分
②若方程的判别式
,即时,.上单调递减,
,即不等式成立.                                            9分
时,方程,其根
,单调递增,,与题设矛盾.
综上所述, .                              10分
(3) 由(2)知,当时, 时,成立.
不妨令
所以
           11分
             12分
累加可得

            14分
考点:导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知R,函数e
(1)若函数没有零点,求实数的取值范围;
(2)若函数存在极大值,并记为,求的表达式;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若在区间上单调递增,试求的取值或取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为函数的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(2)若函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若处有极值,求的单调递增区间;
(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是自然对数的底数).
(1)若曲线处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若在上至少存在一点,使得成立,求的范围.

查看答案和解析>>

同步练习册答案