设函数
,其中
为常数。
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)若函数
有极值点,求
的取值范围及
的极值点。
(Ⅰ)函数
在定义域
上单调递增;(Ⅱ)当且仅当
时
有极值点; 当
时,
有惟一最小值点
;当
时,
有一个极大值点
和一个极小值点
.
解析试题分析:(Ⅰ)函数
科目:高中数学
来源:
题型:解答题
如图所示,将一矩形花坛
科目:高中数学
来源:
题型:解答题
已知
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
在定义域上的单调性的方法,一是利用定义,二是利用导数,此题既有代数函数又有对数函数,显然利用导数判断,只需对
求导,判断
的符号即可;(Ⅱ)求
的极值,只需对
求导即可,利用导数求函数的极值一般分为四个步骤:①确定函数的定义域;②求出
;③令
,列表;④确定函数的极值.此题由(Ⅰ)得,当
时,函数
无极值点,只需讨论
的情况,解
的根,讨论在
范围内根的个数,从而确定
的取值范围及
的极值点,值得注意的是,求出
的根时,忽略讨论根是否在定义域内,而出错.
试题解析:(Ⅰ)由题意知,
的定义域为
,
∴当
时,
,函数
在定义域
上单调递增.
(Ⅱ)①由(Ⅰ)得,当
时,函数
无极值点,②
时,
有两个相同的解
,但当
时,
,当
时,![]()
时,函数
在
上无极值点,③当
时,
有两个不同解,![]()
,
时,
,而
,此时
,
随
在定义域上的变化情况如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
减 ![]()
![]()
智慧中考系列答案
智解中考系列答案
中考总复习抢分计划系列答案
中考总复习特别指导系列答案
中考总复习赢在中考系列答案
国华考试中考总动员系列答案
中国历史同步练习册系列答案
中考123基础章节总复习测试卷系列答案
中考123中考复习必备系列答案
中考2号系列答案
扩建成一个更大的矩形花坛
,要求
在
的延长线上,
在
的延长线上,且对角线
过
点.已知
米,
米。![]()
(1)设
(单位:米),要使花坛
的面积大于32平方米,求
的取值范围;
(2)若
(单位:米),则当
,
的长度分别是多少时,花坛
的面积最大?并求出最大面积.
是实数,函数
,
和
,分别是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致.
(Ⅰ)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(Ⅱ)设
且
,若函数
和
在以
为端点的开区间上单调性一致,求
的最大值.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号