精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的单调区间;
(2)求证:当时,对所有的都有成立.

(1)当时,的减区间为,无增区间;
(2)通过求导数,
,得到
均为单调减函数.
讨论得证.

解析试题分析:(1)根据
确定的减区间为,无增区间;
(2)通过求导数,
,得到
均为单调减函数.
讨论得证.
试题解析:(1)当时,

的减区间为,无增区间;
(2)证明:
因为,,所以,
均为单调减函数.
时,,而
时,,而
综上知,当时,对所有的都有成立.
考点:应用导数研究函数的单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,其中为常数.
(Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数上的最小值;
(Ⅱ)若函数上既有极大值又有极小值,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数上的最小值;
(2)若函数有两个不同的极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,为自然对数的底数.
(1)求的单调区间;
(2)若,且在区间上的最大值为,求的值;
(3)当时,试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,当时,有成立;
②对恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知R,函数e
(1)若函数没有零点,求实数的取值范围;
(2)若函数存在极大值,并记为,求的表达式;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)证明:时,函数上单调递增;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数,当万元时,万元;当万元时,万元.(参考数据:
(Ⅰ)求的解析式;
(Ⅱ)求该景点改造升级后旅游利润的最大值.(利润=旅游收入-投入)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

同步练习册答案