精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,当时,有成立;
②对恒成立.求实数的取值范围.

(1)上单调递减,上单调递增;(2).

解析试题分析:(1)先对求导,分析出导函数是单调递增的,并得.从而得到时,,当时,.即求出函数的单调区间;(2)先由(1)中的单调区间知异号.再证明结论:当时,对任意的成立;时,对任意的成立.从而得出当时,有成立.然后在的范围内研究对恒成立问题.通过在的最值,再由最大值与最小值的差要小于或等于从而得到实数的取值范围.
试题解析:(1)
,则,从而上单调递增,即内单调递增,又
所以当时,,当时,
上单调递减,上单调递增.              4分
(2)①由(1)可知,当 时,必异号,不妨设. 我们先证明一个结论:当时,对任意的成立;时,对任意的成立.
事实上,    
构造函数
,(当且仅当时等号成立).又
时,,所以上是单调递减,此时,对任意的成立.当时,,所以上是单调递增,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)如果函数在区间上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点(是自然对数的底数)?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数处取得极值,且函数只有一个零点,求的取值范围.
(2)若函数在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)求证:当时,对所有的都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案