已知函数.
(1)若函数在处取得极值,且函数只有一个零点,求的取值范围.
(2)若函数在区间上不是单调函数,求的取值范围.
(1);(2).
解析试题分析:(1)函数在处取得极值,知,再由函数只有一个零点和函数的图象特点判断函数的极大值和极小值和0的大小关系即可解决,这是解决三次多项式函数零点个数的一般方法,体现了数形结合的数形思想;(2)三次函数的导函数是二次函数,要使三次函数在不是单调函数,则要满足导数的,要使函数在区间上不是单调函数,还要满足三次函数的导函数在上至少有一个零点.
试题解析:(1),由,
所以,
可知:当时,,单调递增;当时,,单调递减;
当时,,单调递增;而.
所以函数只有一个零点或,解得的取值范围是.
.由条件知方程在上有两个不等的实根,且在至少有一个根.由 ;
由使得:.
综上可知:的取值范围是.
考点:三次函数的零点、三次函数的单调性.
科目:高中数学 来源: 题型:解答题
已知函数,其中,为参数,且.
(1)当时,判断函数是否有极值;
(2)要使函数的极小值大于零,求参数的取值范围;
(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com