精英家教网 > 高中数学 > 题目详情
19.曲线y=-x3+3x2在点(1,2)处的切线方程为(  )
A.y=3x+5B.y=-3x+5C.y=3x-1D.y=2x

分析 求出原函数的导函数,得到曲线y=-x3+3x2在点(1,2)处的切线的斜率,代入直线方程的点斜式得答案.

解答 解:由y=-x3+3x2,得y′=-3x2+6x,
∴y′|x=1=-3+6=3,
则曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),
即y=3x-1.
故选:C.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b≠c,a=$\sqrt{3}$,$\sqrt{3}$sinBcosB-$\sqrt{3}$sinCcosC=cos2B-cos2C.
(1)求角A的大小;
(2)若sinC=$\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知狆:p:$\frac{1}{{x}-2}$≥1,q:|x-a|<1,若p是q的充分不必要条件,则实数a的取值范围为(  )
A.(-∞,3]B.[2,3]C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了得到函数y=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)的图象,可以把函数y=$\frac{1}{2}$cos2x的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正三棱柱的正视图是正方形,且它的外接球的表面积等于$\frac{25π}{3}$,则这个正三棱柱的底面边长为(  )
A.1B.$\sqrt{2}$C.$\frac{5\sqrt{7}}{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线ax+by=4与不等式组$\left\{\begin{array}{l}2x-5y+8≥0\\ 2x+y-4≤0\\ x+2y+4≥0\end{array}\right.$表示的平面区域无公共点,则a+b的取值范围是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面向量$\overrightarrow a=(λ,2)$,$\overrightarrow b=(-3,5)$,其中λ∈R.
(Ⅰ)若$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\sqrt{34}$,求λ的值;
(Ⅱ)若$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角,则m的取值范围是m<1且m≠-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和为Sn,满足an+12=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若${c_n}={(-1)^n}log_2^{\;}{b_n}-\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案