精英家教网 > 高中数学 > 题目详情
9.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b≠c,a=$\sqrt{3}$,$\sqrt{3}$sinBcosB-$\sqrt{3}$sinCcosC=cos2B-cos2C.
(1)求角A的大小;
(2)若sinC=$\frac{4}{5}$,求△ABC的面积.

分析 (1)由二倍角公式及两角差的正弦函数公式化简已知等式可得$sin({2B-\frac{π}{6}})=sin({2C-\frac{π}{6}})$,由b≠c,得B≠C,可得$2B-\frac{π}{6}+2C-\frac{π}{6}=π$,即可解得A的值.
(2)由(1)及正弦定理可求c,结合C<A,可求$cosC=\frac{3}{5}$,从而可求sinB,利用三角形面积公式即可得解.

解答 (本题满分为14分)
解:(1)∵$\sqrt{3}sinBcosB-\sqrt{3}sinCcosC={cos^2}B-{cos^2}C$,
∴$sin({2B-\frac{π}{6}})=sin({2C-\frac{π}{6}})$,
由b≠c,得B≠C,
则$2B-\frac{π}{6}+2C-\frac{π}{6}=π$,
所以$A=\frac{π}{3}$;
(2)由$\frac{a}{sinA}=\frac{c}{sinC}$,得$c=\frac{8}{5}$,
又有c<a,则C<A,
从而$cosC=\frac{3}{5}$,
故$sinB=sin({A+C})=sinAcosC+cosAsinC=\frac{{4+3\sqrt{3}}}{10}$,
所以$S=\frac{1}{2}acsinB=\frac{{8\sqrt{3}+18}}{25}$.

点评 本题主要考查了三角函数恒等变换的应用,考查了三角形内角和定理,正弦定理的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知(x-1)2+y2=1,则$\frac{y}{x+1}$的最大值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集U=R,A={x|-2<x<3},B={x|0≤x<4},试求∁UA,∁UB,∁UA∪∁UB,∁UA∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosωx,cosωx),$\overrightarrow{n}$=(sinωx,-cosωx)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为$\frac{π}{2}$.
(1)化简f(x);
(2)求ω的值;
(3)当m为何值时,直线y=m与函数y=f(x),x∈[0,$\frac{π}{4}$]的图象只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设z=1+i,则$\frac{2}{z}+{z^2}$=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若θ是△ABC的一个内角,且sinθcosθ=-$\frac{1}{8}$,则sinθ-cosθ的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A,B,C的对边分别是a,b,c,已知$C={60°},a+b=λc({1<λ<\sqrt{3}})$,则角A的取值范围是(  )
A.0°<A<30°B.0°<A<30°或90°<A<120°
C.90°<A<120°D.30°<A<60°或90°<A<120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=$\sqrt{2}$a,
(1)求证:PD⊥平面ABCD;
(2)求证,直线PB与AC垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=-x3+3x2在点(1,2)处的切线方程为(  )
A.y=3x+5B.y=-3x+5C.y=3x-1D.y=2x

查看答案和解析>>

同步练习册答案