精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆轴的一个交点.已知椭圆与直线相交于两点,延长与椭圆交于点.

1)求椭圆的方程;

2)求面积的最大值.

【答案】(1)(2)3

【解析】

1)求出圆心,以及与轴的的交点(圆心右侧),为椭圆的右顶点,即可求出椭圆方程;

(2)根据椭圆的对称性,设,直线,椭圆方程与直线方程联立,消去,得到关于的一元二次方程,利用韦达定理,求出关于为变量的函数,运用换元法,结合求导,求出函数的最值,即为面积的最大值.

1)圆,化为

圆心,与轴交点坐标

右顶点为,所求的椭圆方程为.

2)设

得,.

,则

恒成立,

单调递增,当时,取得最小值,

此时取得最大值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A是椭圆的上顶点,斜率为的直线交椭圆EAM两点,点N在椭圆E上,且.

1)当时,求的面积;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左,右焦应分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.

1)求椭圆的方程;

2)已知直线与椭圆切于点,直线平行于,与椭圆交于不同的两点,且与直线交于点.证明:存在常数,使得,并求的值;

3)点是椭圆上除长轴端点外的任一点,连接,设后的角平分线的长轴于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,四个点中有3个点在椭圆.

1)求椭圆的标准方程;

2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴、轴分别交于两点,设直线的斜率分别为,证明:存在常数使得,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD是直角梯形,侧棱底面ABCDAB垂直于ADBC,且.M是棱SB的中点.

(Ⅰ)求证:SCD

(Ⅱ)求二面角的余弦值;

(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,,且的最小值为,的图像的相邻两条对称轴之间的距离为.

1)求函数的解析式和单调递增区间;

2)在中,角,,所对的边分别为,,.,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集I=123456},集合AB都是I的子集,若AB=135},则称AB理想配集,记作(AB),问这样的理想配集AB)共有( )

A. 7B. 8C. 27D. 28

查看答案和解析>>

同步练习册答案