【题目】如图,在四棱锥
中,底面ABCD是直角梯形,侧棱
底面ABCD,AB垂直于AD和BC,
,且
.M是棱SB的中点.
![]()
(Ⅰ)求证:
面SCD;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为
,求
的最大值.
【答案】(Ⅰ)见解析;(Ⅱ)
;(Ⅲ)![]()
【解析】
以点A为原点建立如图所示的空间直角坐标系,写出相应点的坐标.
(Ⅰ)求出平面SCD的法向量,根据空间向量数量积的计算公式,结合线面平行的判定定理证明即可;
(Ⅱ)利用空间向量夹角公式直接求解即可;
(Ⅲ)利用空间向量夹角公式求出
的表达式,利用配方法求出
的最大值.
以点A为原点建立如图所示的空间直角坐标系,则
,
,
,
,
.
(Ⅰ)
,
,
.
设平面SCD的法向量是
,则
,即![]()
令
,则
,
.于是
.
,
.
又
平面SCD,
平面SCD.
![]()
(Ⅱ)易知平面ASD的法向量为
.设平面SCD与平面ASD所成的二面角为
,
则
,
二面角
的余弦值
.
(Ⅲ)易知:平面ASB的法向量为![]()
设
,则
.
.
当
,即
时,
.
科目:高中数学 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:对于每位销售人员,均以10万元为基数,若销售利润没超出这个基数,则可获得销售利润的5%的奖金;若销售利润超出这个基数(超出的部分是a万元),则可获得
万元的奖金.记某位销售人员获得的奖金为y(单位:万元),其销售利润为x(单位:万元).
(1)写出这位销售人员获得的奖金y与其销售利润x之间的函数关系式;
(2)如果这位销售人员获得了
万元的奖金,那么他的销售利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,
,
,
,
,
为
的中点.
![]()
(1)平面
平面![]()
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的中心在坐标原点
,其中一个焦点为圆
的圆心,右顶点是圆
与
轴的一个交点.已知椭圆
与直线
相交于
、
两点,延长
与椭圆
交于点
.
(1)求椭圆的方程;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面ABCD为直角梯形,
,
且
,
平面ABCD.
![]()
(1)求PA与平面PCD所成角的正弦值;
(2)棱PD上是否存在一点E,满足
?若存在,求AE的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的
个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为
,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当
取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当
时,用
表示要补播种的坑的个数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求数列
的通项公式;
(2)若数列
,求数列
的前
项和
;
(3)已知数列
满足
,若对任意
,存在
使得
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com