精英家教网 > 高中数学 > 题目详情
12.f(x)=x2(-1≤x<1)的奇偶性是非奇非偶函数.

分析 判断函数的定义域,即可判断函数的奇偶性.

解答 解:由函数的奇偶性的定义,可知定义域关于原点对称,
因为f(x)=x2(-1≤x<1),所以函数是非奇非偶函数.
故答案为:非奇非偶函数.

点评 本题考查函数的奇偶性的判断,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知f(x)的定义域为[0,1),则函数f(x+1)的定义域为[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集为R,A={x|4x-1≤2x+3},B={x|x>5或x<0},求
(1)A∩B和A∪B;
(2)∁RA∩B和∁RB∪A;
(3)[∁R(A∪B)]∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简下列各式:
(1)$\sqrt{5+2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)$\frac{1}{\root{3}{(2+\sqrt{5})^{3}}}$+$\frac{1}{(\root{3}{2-\sqrt{5}})^{3}}$;
(3)$\sqrt{4{x}^{2}-4x+1}$+2$\root{4}{(x-2)^{4}}$($\frac{1}{2}$≤x≤2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x2-4x+3|.
(1)作出函数f(x)的图象;
(2)求函数f(x)的单调区间,并指出单调性;
(3)求集合M={m|使方程f(x)=mx有四个不相等的实根}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,则$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=(  )
A.$\frac{32}{3}$B.-$\frac{8}{3}$C.$\frac{32}{3}$或-$\frac{8}{3}$D.-$\frac{32}{3}$或$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x+1)=x-1+$\sqrt{2x-3}$
(1)求f(x)
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,那么f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)+…+f(2013)+f($\frac{1}{2013}$)=$\frac{4025}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)=(2a-1)x+3在R上是减函数,则a的取值范围是a<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案