精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x-1|+|2x-1|.

)若对x>0,不等式f(x)≥tx恒成立,求实数t的最大值M;

(Ⅱ)在()成立的条件下,正实数a,b满足a2+b2=2M.证明:a+b≥2ab.

【答案】(Ⅰ)M=1 (Ⅱ)见解析

【解析】试题分析: 恒成立,采用变量分离,转化为,利用绝对值三角不等式得解利用重要不等式a2+b2≥2ab得出ab≤1,再用得解

试题解析:(Ⅰ)解: 恒成立

当且仅当,即时取等号,

∴t≤1,∴M=1.

(Ⅱ)证明:∵a2+b2≥2ab,∴ab≤1.

.(当且仅当“a=b”时取等号)①

又∵,∴

,(当且仅当“a=b”时取等号)②

由①、②得.(当且仅当“a=b”时取等号)

∴a+b≥2ab.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①若,则“”是“”成立的充分不必要条件;

②若椭圆的两个焦点为,且弦过点,则的周长为16;

③若命题“”与命题“”都是真命题,则命题一定是真命题;

④若命题 ,则

其中为真命题的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式中,正确的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(Ⅰ) 求曲线交点的平面直角坐标;

(Ⅱ) 点分别在曲线 上,当最大时,求的面积(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1,C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, 与曲线C1交于(不包括极点O)三点A,B,C.

)求证:

)当时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函数,求出f(x)的解析式;
(II)若f(x)是奇函数,求出f(x)的解析式;
(III)在(II)的条件下,证明f(x)在区间 上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱的底面边长为,高为,现从该正四棱柱的个顶点中任取个点.设随机变量的值为以取出的个点为顶点的三角形的面积.

(1)求概率

(2)的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 与圆 )相交于四个点.

(Ⅰ)求的取值范围;

(Ⅱ)当四边形的面积最大时,求对角线的交点的坐标.

查看答案和解析>>

同步练习册答案