精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 上顶点为,右顶点为,离心率 为坐标原点,圆 与直线相切.

(1)求椭圆的标准方程;

(2)直线 )与椭圆相交于两不同点,若椭圆上一点满足,求面积的最大值及此时的.

【答案】(1);(2) 的面积的最大值为.

【解析】试题分析:

(1)利用写出直线的方程,由圆与直线相切可得的一个方程,由离心率又得,结合可解得,得标准方程;(2)把直线方程与椭圆方程联立方程组,消去后得的一元二次方程,由判别式大于0得的取值范围,设交点为,由韦达定理得,利用椭圆中的弦长公式求得弦长,再求得原点到直线的距离(即为到直线距离),于是的面积就可用表示出来了,再由换元法(设)可求得最大值.

试题解析:

(1)由题意,直线的方程为,即为.因为圆与直线相切,所以,…………①

设椭圆的半焦距为,因为 ,所以,…………②

由①②得,所以椭圆的标准方程为.

(2)由可得,设,则

所以

又点到直线的距离

,∴,又因为

,又,∴,令,则,所以当 时, 最大值为,所以当时, 的面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线相交于两点,点关于轴的对称点为.

(Ⅰ)证明:点在直线上;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.

(Ⅰ) 求的值并估计全校3000名学生中“读书迷”大概有多少?(将频率视为概率)

(Ⅱ)根据已知条件完成下面的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数).

(1)求的极值;

(2)设,记,已知为函数是两个零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 若是函数的一个极值点,求值和函数的单调区间;

(2)当时,求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为,点ABC为该抛物线上不同的三点,且满足.

(1)求

(2)若直线轴于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若 的一个极值点,求 值及的单调区间;

(2)当 时,求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是,乙猜对歌名的概率是,丙猜对歌名的概率是,甲、乙、丙猜对与否互不影响.

(I)求该小组未能进入第二轮的概率;

(Ⅱ)记乙猜歌曲的次数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,a12b14,且anbnan1成等差数列,bnan1bn1成等比数列{nN}

a2a3a4b2b3b4,由此猜测{an}{bn}的通项公式,并证明你的结论;

查看答案和解析>>

同步练习册答案