精英家教网 > 高中数学 > 题目详情
19.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)>0,则使得函数f(x)>0成立的x取值范围是(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

分析 根据已知条件构造新函数g(x)=$\frac{f(x)}{x}$,在利用g(x)的导函数的符号,判定其单调性,依据其图象可求解.

解答 解:令g(x)=$\frac{f(x)}{x}$,g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$>0,∴g(x)在[0,+∞)单调递增,且g(1)=$\frac{f(1)}{1}$=0,∴g(x)=$\frac{f(x)}{x}$>0在(1,+∞)上成立,
即x∈(1,+∞)时,f(x)>0,x∈(0,1,)时,f(x)<0,又因为f(x)是奇函数,所以x∈(-1,0,)时,f(x)>0,
∴使得函数f(x)>0成立的x取值范围:(-1,0)∪(1,+∞).
故答案选A.

点评 本题考查了利用已知构造抽象函数,解函数不等式,是必须掌握的一种解题技巧,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=x+y的最小值为(  )
A.1B.$\frac{6}{5}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3+log2(x+$\sqrt{{x}^{2}+1}$),则对任意实数a,b而言,命题“a+b>0”是命题“f(a)+f(b)≥0”的(  )条件.
A.充分必要B.充分非必要
C.必要非充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x>4,则函数y=x+$\frac{9}{x-4}$(  )
A.有最大值10B.有最小值10C.有最大值6D.有最小值6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知a4=10,a10=-2,且Sn=60,求n.
(2)已知a1=-7,an+1=an+2,求S17
(3)若a2+a7+a12=24,求S13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图在正方体ABCDA1B1C1D1中判断下列位置关系:
(1)AD1所在直线与平面BCC1的位置关系是平行;
(2)平面A1BC1与平面ABCD的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=log2(ax2+2x+3),若对于任意实数k,总存在实数x0,使得f(x0)=k成立,则实数a的取值范围是(  )
A.$[-1,\frac{1}{3})$B.$[0,\frac{1}{3}]$C.[3,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合B={-1,0,1},若A⊆B,则满足条件的A有8 个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的弦被点(1,1)平分,则这条弦所在的直线方程是(  )
A.x+2y-3=0B.2x-y-3=0C.2x+y-3=0D.x+2y+3=0

查看答案和解析>>

同步练习册答案