2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$
£¨1£©Èô¹ýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª8£¬ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºx=t£¨t£¾0£©ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÒÔMNΪֱ¾¶µÄÔ²ÓëÍÖÔ²CµÄ½»µãΪP£¨²»Í¬ÓÚM¡¢N£©£¬Çó¡÷MNPµÄÃæ»ýS£¨t£©µÄ×î´óÖµºÍ´ËʱtµÄÖµ£®

·ÖÎö £¨1£©ÓɹýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£¬¿ÉµÃ4a=8£¬ÓÖÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿É£®
£¨2£©0£¼t£¼2£®°Ñx=t´úÈëÍÖÔ²·½³Ì¿ÉµÃy2=1-$\frac{{t}^{2}}{4}$£¬¿ÉµÃM$£¨t£¬\frac{\sqrt{4-{t}^{2}}}{2}£©$£¬$N£¨t£¬-\frac{\sqrt{4-{t}^{2}}}{2}£©$£®ÒÔMNΪֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ£º£¨x-t£©2+y2=1-$\frac{{t}^{2}}{4}$£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º3x2-8tx+5t2=0£¬½âµÃxP=$\frac{5t}{3}$¡Ü2£¬$0£¼t¡Ü\frac{6}{5}$£®Òò´Ë¡÷MNPµÄÃæ»ýS£¨t£©=$\frac{1}{2}|MN|•{x}_{P}$=$\frac{1}{3}\sqrt{-£¨{t}^{2}-2£©^{2}+4}$£¬ÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß¹ýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£¬
¡à4a=8£¬½âµÃa=2£®
¡ßÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2=b2+c2£¬
½âµÃc=$\sqrt{3}$£¬b=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨2£©0£¼t£¼2£®
°Ñx=t´úÈëÍÖÔ²·½³Ì¿ÉµÃy2=1-$\frac{{t}^{2}}{4}$£¬¡ày=¡À$\frac{\sqrt{4-{t}^{2}}}{2}$£®M$£¨t£¬\frac{\sqrt{4-{t}^{2}}}{2}£©$£¬$N£¨t£¬-\frac{\sqrt{4-{t}^{2}}}{2}£©$£®
¡àÒÔMNΪֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ£º£¨x-t£©2+y2=1-$\frac{{t}^{2}}{4}$£®
ÁªÁ¢$\left\{\begin{array}{l}{£¨x-t£©^{2}+{y}^{2}=1-\frac{{t}^{2}}{4}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
»¯Îª3x2-8tx+5t2=0£¬
½âµÃx=t£¬»òx=$\frac{5t}{3}$£®
¡àxP=$\frac{5t}{3}$£®
¡à$\frac{5t}{3}$¡Ü2£¬½âµÃ$0£¼t¡Ü\frac{6}{5}$£®
¡à¡÷MNPµÄÃæ»ýS£¨t£©=$\frac{1}{2}¡Á2¡Á\frac{\sqrt{4-{t}^{2}}}{2}¡Á£¨\frac{5t}{3}-t£©$=$\frac{1}{3}\sqrt{4-{t}^{2}}•t$=$\frac{1}{3}\sqrt{-£¨{t}^{2}-2£©^{2}+4}$£¬
¡ßh£¨t£©=-£¨t2-2£©2+4ÔÚ$0£¼t¡Ü\frac{6}{5}$ÄÚµ¥µ÷µÝÔö£¬
¡àµ±t=$\frac{6}{5}$ʱ£¬h£¨t£©È¡µÃ×î´óÖµ£¬´ËʱS£¨t£©Ò²È¡µÃ×î´óÖµ$\frac{16}{25}$£®

µãÆÀ ±¾Ì⿼²éÁËÔ²ÓëÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪ[-4£¬6]£¬ÇÒÔÚÇø¼ä[-4£¬-2]Éϵݼõ£¬ÔÚÇø¼ä£¨-2£¬6]ÉϵÝÔö£¬ÇÒf£¨-4£©£¼f£¨6£©£¬Ôòº¯Êýf£¨x£©µÄ×îСֵÊÇf£¨-2£©£¬×î´óÖµÊÇf£¨6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª{an}ÊǵȱÈÊýÁУ¬ÔòÔÚÏÂÁÐÊýÁУº¢Ù{$\frac{1}{{a}_{n}}$}£» ¢Ú{c-an}£¬cΪ³£Êý£»¢Û{an2}£»¢Ü{a2n}£»¢Ý{an+an-1}£»¢Þ{lgan}ÖУ®³ÉµÈ±ÈÊýÁеĸöÊýÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èôº¯Êýf£¨x£©ÔÚËüµÄ¶¨ÒåÓò£¨0£¬+¡Þ£©ÄÚΪÔöº¯Êý£¬ÇÒ¶ÔÈÎÒâÕýÊýx£¬¶¼ÓÐf£¨f£¨x£©-lnx£©=1£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬Ôòf£¨e£©µÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®1B£®2C£®eD£®e+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x¡ÊR|x2-2x£¾0}£¬¼¯ºÏB={x¡ÊR|y=lg£¨5-x2£©}£¬ÔòB=£¨-$\sqrt{5}$£¬$\sqrt{5}$£©£»A¡ÉB=£¨-$\sqrt{5}$£¬0£©¡È£¨2£¬$\sqrt{5}$£©£» £¨∁UA£©¡È£¨∁UB£©=£¨-¡Þ£¬-$\sqrt{5}$]¡È[0£¬2]¡È[$\sqrt{5}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬OÊÇDBµÄÖе㣬ֱÏßA1C½»Æ½ÃæC1BDÓÚµãM£¬ÅжÏÏÂÁнáÂÛÊÇ·ñÕýÈ·£º
£¨1£©C1£¬M£¬OÈýµã¹²Ïߣ»
£¨2£©C1£¬M£¬O£¬CËÄµã¹²Ãæ£»
£¨3£©C1£¬O£¬A1£¬MËÄµã¹²Ãæ£»
£¨4£©D£¬D1£¬O£¬MËÄµã¹²Ãæ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¹ýÆ½ÃæÍâÁ½µã£¬¿É×÷0»ò1¸öÆ½ÃæÓëÒÑÖªÆ½ÃæÆ½ÐУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èôº¯Êýy=£¨logax£©2-2logax+b£¨0£¼a£¼1£©µÄ¶¨ÒåÓòΪ[2£¬4]£¬ÖµÓòΪ[$\frac{25}{4}$£¬8]£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÈçͼËùʾµÄ¶àÃæÌåÖУ¬µ×ÃæBCFEÊÇÌÝÐΣ¬EF¡ÎBC£¬EF¡ÍEB£¬Æ½ÃæABEÓëÆ½ÃæBCFEËù³ÉµÄ½ÇΪֱ¶þÃæ½Ç£¬AD¡ÎEF£¬BC=2AD=4£¬EF=3£¬AE=BE=2£¬AB=2$\sqrt{2}$£¬GΪBCÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAE¡ÍÆ½ÃæBCFE£»
£¨¢ò£©ÇóÒìÃæÖ±ÏßAEÓëCDËù³É½ÇµÄÕýÇУ»
£¨¢ó£©ÇóÖ¤£ºBD¡ÍEG£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸