精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,an=2n;{bn}为首项是2的等差数列,且b3•S5=372.
(1)求{bn}的通项公式;
(2)设{bn}的前n项和为Tn,求
1
T1
+
1
T2
+…
1
Tn
的值.
(1)∵an=2n
∴{an}是首项为2公比为2的等比数列.
S5=
2(1-25)
1-2
=26-2=62
…(2分)
又∵b3•S5=372,
∴b3=6,…(3分)
∵{bn}为首项是2的等差数列.
∴b3=2+2d=6,
∴d=2,…(4分)
∴bn=2+2(n-1)=2n(n∈N*).…(6分)
(2)∵bn=2n,
Tn=
(2+2n)n
2
=n(n+1)
…(8分)
1
Tn
=
1
n(n+1)
=
1
n
-
1
n+1
…(10分)
1
T1
+
1
T2
+…
1
Tn

=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案