精英家教网 > 高中数学 > 题目详情
16.某袋黄豆种子共100kg,现加人20kg黑豆种子并拌匀,从中随机抽出一粒种子,则这粒种子是黑豆种子的概率是$\frac{1}{6}$.

分析 由题意可知,总重量为100+20=120kg,其中20kg黑豆,根据概率公式计算即可.

解答 解:由题意可知,总重量为100+20=120kg,其中20kg黑豆,则这粒种子是黑豆种子的概率是$\frac{20}{100+20}$=$\frac{1}{6}$,
故答案为:$\frac{1}{6}$.

点评 本题考查了几何概型概率问题,关键是掌握规律公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.数列1,$\frac{1}{2}$,$\frac{1}{{2}^{2}}$,…,$\frac{1}{{2}^{n}}$,则各项和等于(  )
A.2-$\frac{1}{{2}^{n}}$B.1-$\frac{1}{{2}^{n}}$C.1-$\frac{1}{{2}^{n+1}}$D.$\frac{1}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,且$\frac{c-4a}{b}$=$\frac{cos(A+B)}{cosB}$.
(1)求cosB的值;
(2)若△ABC的面积为$\sqrt{15}$,且a=c+2,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x-1)2+(y+2)2=1,求满足下面条件的直线的方程.
(1)过点Q(0,-2)且与圆C相切的直线;
(2)过点P(2,3)且与圆C相切的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=CC1,M、N、P分别是BB1、A1C1、B1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:面MNP∥面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正四棱锥S-ABCD中,SA=2AB=2,M,N分别是棱SA,SC的中点,平面SBC∩平面SAD=l.
(1)求证:l∥平面ABCD;
(2)求异面直线DM与BN夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.不求值,比较下列各对三角函数值的大小:
(1)cos(-$\frac{π}{7}$),cos(-$\frac{π}{3}$);
(2)sin$\frac{4π}{5}$,sin$\frac{2π}{7}$;
(3)cos$\frac{2π}{5}$,sin$\frac{2π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC的顶点坐标是A(3,1,1),B(-5,2,1),C(-$\frac{8}{3}$,2,3),则它在yOz平面上射影图形的面积是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx-3的某一个对称中心,并利用对称中心的上述定义,可得到$f({\frac{1}{2016}})+f({\frac{2}{2016}})+f({\frac{3}{2016}})+…+f({\frac{4030}{2016}})+f({\frac{4031}{2016}})$的值为(  )
A.-4031B.4031C.-8062D.8062

查看答案和解析>>

同步练习册答案