精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,若a=2,b=3,∠C=60°,则sinA=
 
考点:余弦定理的应用
专题:解三角形
分析:通过余弦定理求出c,然后利用正弦定理求出sinA.
解答: 解:在△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,若a=2,b=3,∠C=60°,
由余弦定理得:c2=b2+a2-2bacosC=13-12×
1
2
=7.
由正弦定理
a
sinA
=
c
sinC
,∴sinA=
asinC
c
=
3
2
7
=
21
7

故答案为:
21
7
点评:此题考查了正弦定理,余弦定理的应用,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}公差不为0,且a2a4a9成等比数列.an的前项和为Sn且 S7=70.
(1)求{an}的通项公式
(2)若bn=
1
anan+1
求的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点的直线交抛物线于A、B两点,O为坐标原点,则
OA
OB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,则“a=1”是“直线l2:ax+y-1=0与直线l2:x-ay-3=0垂直”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-a.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)对任意a≤-3,使得f(1)是函数f(x)的区间[1,b](b>1)上的最大值,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<ax+1≤5},B={x|
x-2
2x+1
≤0}
(Ⅰ)若A⊆B,求实数a的取值范围;
(Ⅱ)集合A,B能否相等,若能求出a的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中an的前项和为Sn若有Sn=n2-4n+5则{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.求f(x)图象上在点(0,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3+2x-x2
的定义域为A,集合B={x|x2-2mx+m2-9≤0}.
(Ⅰ)若A∩B=[2,3],求实数m的值;
(Ⅱ)若A⊆CRB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案