精英家教网 > 高中数学 > 题目详情
8.$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(-1,2)则(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{a}$=(  )
A.-1B.0C.1D.2

分析 利用向量的加法和数量积的坐标运算解答本题.

解答 解:因为$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(-1,2)则(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{a}$=(1,0)•(1,-1)=1;
故选:C

点评 本题考查了向量的加法和数量积的坐标运算;属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.
(1)求三棱锥P-ABC的体积;
(2)证明:在线段PC上存在点M,使得AC⊥BM,并求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题p:?n∈N,n2>2n,则¬p为(  )
A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∈N,n2=2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.
(1)直方图中的a=3.
(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为6000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线过点$(4,\sqrt{3})$且渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的标准方程是$\frac{1}{4}$x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=(  )
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是(  )
A.?n∈N*,f(n)∉N*且f(n)>nB.?n∈N*,f(n)∉N*或f(n)>n
C.?n0∈N*,f(n0)∉N*且f(n0)>n0D.?n0∈N*,f(n0)∉N*或f(n0)>n0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

查看答案和解析>>

同步练习册答案