精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC,D、E分别为AA1、B1C的中点。
(I)证明:DE∥底面ABC;
(II)设二面角A-BC-D为60°,求BD与平面BCC1B1所成的角的正弦值。

(Ⅰ)证明:设BC的中点为F,连结AF、EF,则EF∥CC1,且EF=CC1
 又AD∥CC1,且AD=CC1,  
∴EF∥AD,且EF=AD,
∴四边形ADEF是平行四边形,
∴DE∥AF,
又∵DE平面ABC,AF平面ABC,
∴DE∥底面ABC。
(Ⅱ)解:连结DF,
∵AB=AC,F为BC的中点,
∴AF⊥BC,
又∵AA1⊥底面ABC,
∴AA1⊥BC,
 又∵AA1∩AF=A,
∴BC⊥平面ADF,∴BC⊥DF,
∴∠AFD就是A-BC-D的平面角,即∠AFD=60°,
∵BB1⊥底面ABC,
∴BB1⊥AF,
 又∵AF⊥BC,BC∩BB1= B,
∴AF⊥平面BCE,
∵DE∥AF,
∴DE⊥平面BCE,
∴∠DBE就是BD与平面BCC1B1所成的角,
设AF=a,则DE=a,AD=,AB=,∴BD=
∴sin∠DBE==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案