精英家教网 > 高中数学 > 题目详情
13.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1与x轴、y轴的正半轴分别交于A、B两点,左焦点为F,求△ABF的面积.

分析 由椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,可得a=5,b=4,c=3,所以|AF|=a+c=8,|OB|=4,即可求出△ABF的面积.

解答 解:由椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,可得a=5,b=4,c=3,
∴|AF|=a+c=8,|OB|=4,
∴△ABF的面积为$\frac{1}{2}×8×4$=16.

点评 本题考查椭圆的方程与性质,考查三角形的面积的计算,确定椭圆的几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知f(tanx)=cot3x-cos3x.
(1)求f(cotx)的表达式;
(2)求f(-$\frac{\sqrt{3}}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知y=f(x)的图象如图所示,求f(x);
(2)已知f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2f(x)-f(-x)=lg(x+1),x∈(-1,1),求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,棱长为4的正四面体ABCD,AE=$\frac{1}{3}$AB,试建立适当的坐标系,写出各点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.线段P1P2长为5cm,点P在P1P2的延长线上,且|P2P|=5cm,则点P分$\overrightarrow{{P}_{2}{P}_{1}}$所成的比是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=3sin(4x+$\frac{π}{3}$)的图象与x轴的所有交点中,跟原点最近的点的坐标是(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=$\sqrt{{x}^{2}+4}$+$\sqrt{{x}^{2}-10x+34}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.填空:x2+x+$\frac{1}{{x}^{2}}$+$\frac{1}{x}$-4=($\frac{1}{x}$+x+3)($\frac{1}{x}$+x-2)

查看答案和解析>>

同步练习册答案