精英家教网 > 高中数学 > 题目详情
2.若lgx-lgy=t,则1g($\frac{x}{2}$)3-lg($\frac{y}{2}$)3=(  )
A.3tB.$\frac{3}{2}$tC.tD.$\frac{t}{2}$

分析 由已知条件利用对数的性质和运算法则直接求解.

解答 解:∵lgx-lgy=t,
∴1g($\frac{x}{2}$)3-lg($\frac{y}{2}$)3
=3lg$\frac{x}{2}$-3lg$\frac{y}{2}$=(lgx-lgy)
=3($lg\frac{x}{2}-lg\frac{y}{2}$)
=3[(lgx-lg2)-(lgy-lg2)]
=3(lgx-lgy)
=3t.
故选:A.

点评 本题考查对数的化简求值,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求4×6n+5n-1被20除后的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正整数n>1.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{25}{36}$.(其中:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x|x-a|-x(x∈R).
(1)试讨论f(x)的奇偶性;
(2)存在实数a对任意的x∈[0,t],不等式-4≤f(x)≤6恒成立,求实数t的最大值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若(|x|-1)4有意义,则x的取值范围为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式中的x:
(1)lg(10x)+1=3lgx;
(2)lg$\frac{x}{10}$=-2-2lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:lg(2x-1)≤0,q:x2-(2a+1)x+a2+a<0,若p是q成立的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,0)∪[$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.[0,$\frac{1}{2}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有下列四组命题:
①P:集合A⊆B,B⊆C,C⊆A,Q:集合A=B=C;
②P:A∩B=A∩C,Q:B=C;
③P:(x-2)(x-3)=0,Q:$\frac{x-2}{x-3}$=0;
④P:抛物线y=ax2+bx+c(a≠0)过原点,Q:c=0
其中P是Q的充要条件的有 (  )
A.①、②B.①、④C.②、③D.②、④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下列各式(式中每个字母均为正数).
①$\frac{(2{x}^{\frac{1}{4}}{y}^{-\frac{2}{3}})•(-3{x}^{\frac{1}{4}}{y}^{\frac{1}{3}})^{3}}{4x{y}^{-\frac{2}{3}}}$;
②2a${\;}^{\frac{1}{4}}$b${\;}^{-\frac{1}{3}}$÷(-$\frac{1}{8}$a${\;}^{-\frac{1}{4}}$b${\;}^{-\frac{2}{3}}$);
③(2x${\;}^{\frac{1}{4}}$+3${\;}^{\frac{3}{2}}$)(2x${\;}^{\frac{1}{4}}$-3${\;}^{\frac{3}{2}}$)-4x${\;}^{-\frac{1}{2}}$(x-x${\;}^{\frac{1}{2}}$).

查看答案和解析>>

同步练习册答案