精英家教网 > 高中数学 > 题目详情
13.已知正整数n>1.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{25}{36}$.(其中:ln2≈0.6931)

分析 构造函数y=$\frac{1}{x}$,利用函数在(0,+∞)是凹函数,由图象结合曲边梯形的面积表示得到证明.

解答 证明:构造函数y=$\frac{1}{x}$,因为此函数在(0,+∞)是凹函数,由图象可知,

在区间[n,2n]上的n个矩形的面积之和小于曲边梯形的面积,
所以$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<${∫}_{n}^{2n}\frac{1}{x}dx$=lnx|${\;}_{n}^{2n}$=ln2n-lnn=ln2≈0.6931<$\frac{25}{36}$.

点评 本题考查了不等式的证明;本题采用了定积分的几何意义证明的,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线xsinα+y+2=0的倾斜角的取值范围是(  )
A.[0,π)B.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)C.[0,$\frac{π}{4}$]D.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2x2+3y2=64,则x2+y2的最大值是32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x||2x-1|<3},B={x|x2-(a+2)x+2a≤0}.
(1)若a=1,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角$C=\frac{π}{3}$,边AB=1,则△ABC周长的取值范围是(  )
A.(2,3]B.[1,3]C.(0,2]D.(2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆的中心在原点,焦点在x轴,长、短轴长之比为2:1,若圆x2+y2-4y+3=0上的点P到此椭圆上点Q的最大值为1+$\frac{2\sqrt{21}}{3}$,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=$\frac{\sqrt{{x}^{2}+x-2}}{|x|-1}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若lgx-lgy=t,则1g($\frac{x}{2}$)3-lg($\frac{y}{2}$)3=(  )
A.3tB.$\frac{3}{2}$tC.tD.$\frac{t}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知4x-1+3=4•2x-1,求x的值.
(2)若1ga+1gb=2lg(a-2b),求log${\;}_{\sqrt{2}}$$\frac{a}{b}$的值.

查看答案和解析>>

同步练习册答案