精英家教网 > 高中数学 > 题目详情
5.求函数f(x)=$\frac{\sqrt{{x}^{2}+x-2}}{|x|-1}$的定义域.

分析 根据使函数解析式有意义的原则,构造关于x的不等式,解得函数的定义域.

解答 解:由$\left\{\begin{array}{l}{x}^{2}+x-2≥0\\ \left|x\right|-1≠0\end{array}\right.$得:
x∈(-∞,-2]∪(1,+∞),
故函数f(x)=$\frac{\sqrt{{x}^{2}+x-2}}{|x|-1}$的定义域为(-∞,-2]∪(1,+∞).

点评 本题考查的知识点是函数的定义域,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F(c,0),P(x0,y0)为椭圆上一点,且PA⊥PF.
(1)若a=3,b=$\sqrt{5}$,求x0的值;
(2)若x0=0,求椭圆的离心率;
(3)试判断该椭圆的右准线与以F为圆心,FP为半径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.方程x2-xy-2y2+3y-1=0表示的图形是(  )
A.两个点B.四个点C.两条直线D.四条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正整数n>1.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{25}{36}$.(其中:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.化简5${\;}^{lo{g}_{25}}$${\;}^{(l{g}^{2}2+l{g}^{\frac{5}{2}}})$的结果是(  )
A.lg$\frac{1}{5}$B.lg5C.lg2$\frac{1}{5}$D.lg25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x|x-a|-x(x∈R).
(1)试讨论f(x)的奇偶性;
(2)存在实数a对任意的x∈[0,t],不等式-4≤f(x)≤6恒成立,求实数t的最大值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若(|x|-1)4有意义,则x的取值范围为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:lg(2x-1)≤0,q:x2-(2a+1)x+a2+a<0,若p是q成立的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,0)∪[$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.[0,$\frac{1}{2}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|2${\;}^{x-{x}^{2}}$>1},B={x|lg(x2-2ax+a2+1)>0}
(1)当a=1时,求A∩B
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案