15£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¶¥µãΪA£¬ÓÒ½¹µãΪF£¨c£¬0£©£¬P£¨x0£¬y0£©ÎªÍÖÔ²ÉÏÒ»µã£¬ÇÒPA¡ÍPF£®
£¨1£©Èôa=3£¬b=$\sqrt{5}$£¬Çóx0µÄÖµ£»
£¨2£©Èôx0=0£¬ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨3£©ÊÔÅжϸÃÍÖÔ²µÄÓÒ×¼ÏßÓëÒÔFΪԲÐÄ£¬FPΪ°ë¾¶µÄÔ²µÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃc=2£¬ÔÙÓÉ´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬½áºÏÍÖÔ²·½³Ì£¬¿ÉµÃËùÇó£»
£¨2£©ÔËÓô¹Ö±µÄÌõ¼þ£¬ÒÔ¼°ÍÖÔ²·½³Ì¿ÉµÃb2=ac=a2-c2£¬ÔÙÓÉÀëÐÄÂʹ«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©ÓÉPÔÚÒÔAFΪֱ¾¶µÄÔ²ÉÏ£¬½áºÏÍÖÔ²·½³Ì£¬½âµÃPµÄºá×ø±ê£¬ÔÙÓÉÍÖÔ²µÄµÚ¶þ¶¨Ò壬½áºÏÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬¼´¿ÉÅжϣ®

½â´ð ½â£º£¨1£©ÓÉa=3£¬b=$\sqrt{5}$£¬¿ÉµÃc=$\sqrt{9-5}$=2£¬
PA¡ÍPF£¬¿ÉµÃ$\frac{{y}_{0}}{{x}_{0}+3}$•$\frac{{y}_{0}}{{x}_{0}-2}$=-1£¬¼´Îªy02=-x02-x0+6£¬
ÓÖ$\frac{{{x}_{0}}^{2}}{9}$+$\frac{{{y}_{0}}^{2}}{5}$=1£¬½âµÃx0=$\frac{3}{4}$»ò-3£¨ÉáÈ¥£©£»
£¨2£©x0=0£¬¼´ÓÐy02=b2£¬
PA¡ÍPF£¬¿ÉµÃ$\frac{{y}_{0}}{a}$•$\frac{{y}_{0}}{-c}$=-1£¬¼´ÓÐy02=ac£¬
¼´Îªb2=ac=a2-c2£¬
ÓÉe=$\frac{c}{a}$£¬¿ÉµÃe2+e-1=0£¬
½âµÃe=$\frac{\sqrt{5}-1}{2}$£¨¸ºµÄÉáÈ¥£©£»
£¨3£©PA¡ÍPF£¬¿ÉµÃPÔÚÒÔAFΪֱ¾¶µÄÔ²ÉÏ£¬
¼´ÓÐÔ²µÄ·½³ÌΪ£¨x+a£©£¨x-c£©+y2=0£¬
¼´ÓÐy02=£¨x0+a£©£¨c-x0£©£¬
ÓÖ$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬
½â·½³Ì¿ÉµÃ£¬x0=-$\frac{a£¨{a}^{2}-{c}^{2}-ac£©}{{c}^{2}}$»ò-a£¨ÉáÈ¥£©£¬
ÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉµÃ£¬|PF|=£¨$\frac{{a}^{2}}{c}$-x0£©•$\frac{c}{a}$
=a+$\frac{c}{a}$•$\frac{a£¨{a}^{2}-{c}^{2}-ac£©}{{c}^{2}}$=$\frac{{a}^{2}}{c}$-c£¬
¶øFµ½ÓÒ×¼Ïßx=$\frac{{a}^{2}}{c}$µÄ¾àÀëΪ$\frac{{a}^{2}}{c}$-c£¬
¹Ê¸ÃÍÖÔ²µÄÓÒ×¼ÏßÓëÒÔFΪԲÐÄ£¬FPΪ°ë¾¶µÄÔ²ÏàÇУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÅжϣ¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚ¡÷ABCÖУ¬¡°sinA£¾sinB¡±ÊÇ¡°a£¾b¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³Ô°ÁÖ¾Ö¶Ô1 000ÖêÊ÷ľµÄÉú³¤Çé¿ö½øÐе÷²é£¬ÆäÖÐɼÊ÷600Ö꣬»±Ê÷400Ö꣮ÏÖÓ÷ֲã³éÑù·½·¨´ÓÕâ1 000ÖêÊ÷ľÖÐËæ»ú³éÈ¡100Ö꣬ɼÊ÷Óë»±Ê÷µÄÊ÷¸ÉÖܳ¤£¨µ¥Î»£ºcm£©µÄ³é²é½á¹ûÈç±í£º
Ê÷¸ÉÖܳ¤£¨µ¥Î»£ºcm£©[30£¬40£©[40£¬50£©[50£¬60£©[60£¬70£©
ɼÊ÷61921x
»±Ê÷420y6
£¨1£©Çóx£¬yÖµ£» 
£¨2£©Ê÷¸ÉÖܳ¤ÔÚ30cmµ½40cmÖ®¼äµÄ4Öê»±Ê÷ÓÐ1Ö껼³æº¦£¬ÏÖÒª¶ÔÕâ4ÖêÊ÷ÖðÒ»½øÐÐÅŲéÖ±ÖÁÕÒ³ö»¼³æº¦µÄÊ÷ľΪֹ£¬ÇóÅŲéµÄÊ÷ľǡºÃΪ2ÖêµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ö±Ïßxsin¦Á+y+2=0µÄÇãб½ÇµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬¦Ð£©B£®[0£¬$\frac{¦Ð}{4}$]¡È[$\frac{3}{4}$¦Ð£¬¦Ð£©C£®[0£¬$\frac{¦Ð}{4}$]D£®[0£¬$\frac{¦Ð}{4}$]¡È£¨$\frac{¦Ð}{2}$£¬¦Ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈô¡°p»òq¡±ÊǼÙÃüÌ⣬Ôò¡°?pÇÒ?q¡±ÊÇÕæÃüÌ⣻
¢ÚÈôʵϵÊý¹ØÓÚxµÄ¶þ´Î²»µÈʽ£¬ax2+bx+c¡Ü0µÄ½â¼¯Îª∅£¬Ôò±ØÓÐa£¾0ÇÒ¡÷¡Ü0£»
¢Û|x|£¾|y|?x2£¾y2£»
¢Ü$\left\{\begin{array}{l}x£¾2\\ y£¾2\end{array}\right.?\left\{\begin{array}{l}x+y£¾4\\ xy£¾4\end{array}\right.$£®
ÆäÖÐÕæÃüÌâµÄÊÇ¢Ù¢Û£®£¨ÌîдÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐÈýÊÓͼËù¶ÔÓ¦µÄÖ±¹ÛͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÇúÏßy=1+$\sqrt{4-{x}^{2}}$£¨x¡Ê[-2£¬2]£©ÓëÖ±Ïßy=k£¨x-2£©+4ÓÐÁ½¸ö¹«¹²µãʱ£¬kµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{5}{12}$£©B£®[$\frac{1}{4}$£¬$\frac{1}{3}$£©C£®£¨$\frac{5}{12}$£¬+¡Þ£©D£®£¨$\frac{5}{12}$£¬$\frac{3}{4}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô2x2+3y2=64£¬Ôòx2+y2µÄ×î´óÖµÊÇ32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Çóº¯Êýf£¨x£©=$\frac{\sqrt{{x}^{2}+x-2}}{|x|-1}$µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸