| A. | (2,3] | B. | [1,3] | C. | (0,2] | D. | (2,5] |
分析 由正弦定理可得a=2sinA,b=2sinB,再由两角和差的正弦公式,结合正弦函数的性质,计算即可得到所求范围.
解答 解:由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\frac{1}{sin\frac{π}{3}}=\frac{2\sqrt{3}}{3}$,
即有a=$\frac{2\sqrt{3}}{3}$sinA,b=$\frac{2\sqrt{3}}{3}$sinB,
则△ABC周长=a+b+c=$\frac{2\sqrt{3}}{3}$sinA+$\frac{2\sqrt{3}}{3}$sinB+1
=$\frac{2\sqrt{3}}{3}$(sinA+sinB)+1
=$\frac{2\sqrt{3}}{3}$[sinA+sin($\frac{2π}{3}$-A)]+1
=$\frac{2\sqrt{3}}{3}$($\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA)+1
=2sin(A+$\frac{π}{6}$)+1,
由0<A<$\frac{2π}{3}$,可得:$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,解得:$\frac{1}{2}<$sin(A+$\frac{π}{6}$)≤1
解得:2sin(A+$\frac{π}{6}$)+1∈(2,3].
故选:A.
点评 本题考查正弦定理的运用,两角和差的正弦、余弦公式和余弦函数的性质的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,$\frac{1}{2}$] | B. | (-2,$\frac{1}{2}$] | C. | [-2,$\frac{1}{2}$) | D. | (-2,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | lg$\frac{1}{5}$ | B. | lg5 | C. | lg2$\frac{1}{5}$ | D. | lg25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,+∞) | B. | (-∞,0)∪[$\frac{1}{2}$,+∞) | C. | (0,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com