如图,在平面直角坐标系xOy中,已知点A为椭圆
=1的右顶点,点D(1,0),点P、B在椭圆上,![]()
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
解:(1) 设P(x0,y0).因为
,且D(1,0),A(3,0),点B、P在椭圆上,所以B(-x0,y0),所以x0=1,将其代入椭圆,得y0=2,所以P(1,2),B(-1,2).所以直线BD的方程为x+y-1=0.
(2) 线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为y=x-1.解方程组
得圆心C的坐标为(0,-1).所以圆C的半径r=CP=
.因为圆心C(0,-1)到直线BD的距离为d=
=
,所以直线BD被圆C截得的弦长为2
=4
.
(3) 这样的圆M与圆N存在.由题意得,点M一定在y轴上,点N一定在线段PC的垂直平分线y=x-1上.当圆M与圆N是两个相外切的等圆时,一定有P、M、N在一条直线上,且PM=PN.M(0,b),则N(2,4-b).因为点N(2,4-b)在直线y=x-1上,所以4-b=2-1,b=3.所以这两个圆的半径为PM=
,方程分别为x2+(y-3)2=2,(x-2)2+(y-1)2=2.
科目:高中数学 来源: 题型:
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,分别求满足下列条件的a、b的值.
(1) 直线l1过点(-3,-1),且l1⊥l2;
(2) 直线l1与l2平行,且坐标原点到l1、l2的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,
![]()
M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1) 求证:当l与m垂直时,l必过圆心C;
(2) 当PQ=2
时,求直线l的方程;
(3) 探索
·
是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
若对于预报变量y与解释变量x的10组统计数据的回归模型中,计算R2=0.95,又知残差平方和为120.55,那么
的值为
A.241.1 B.245.1 C.2411 D.2451
查看答案和解析>>
科目:高中数学 来源: 题型:
若α、β的终边关于y轴对称,则下列等式正确的是( )
A.sinα=sinβ B.cosα=cosβ C.tanα=tanβ D.tanα·tanβ=1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com