精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1
A1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:MN//平面ABC1.
详见解析

试题分析:(1)根据直三棱柱的性质,利用面面垂直性质定理证出平面,得出.正方形中,对角线,由线面垂直的判定定理可证出平面;(2)取的中点,连,利用三角形中位线定理和平行四边形的性质,证出,从而得到是平行四边形,可得,结合线面平行判定定理即可证出
解:(1)在直三棱柱ABC—A1B1C1中,
侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,
∵∠ABC=90°,即AB⊥BC,
∴AB⊥平面BB1C­1                 2分
∵CB1平面BB1C1C,∴AB⊥CB1.        4分
,∴是正方形,
,∴CB1⊥平面ABC1.       6分
(2)取AC1的中点F,连BF、NF.       7分
在△AA1C1中,N、F是中点,∴NFAA1,又∵BMAA1,∴EFBM,   8分
故四边形BMNF是平行四边形,∴MN//BF,    10分
而EF面ABC1,MN平面ABC1,∴MN//面ABC1 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,分别为,中点。
(1)求异面直线所成角的大小;
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(1)求证:平面GNM∥平面ADC′.
(2)求证:C′A⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,
中点,上一点,且.
(1)当时,求证:平面
(2)若直线与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,,,,点中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·广东高考]设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是(  )
A.若α⊥β,m?α,n?β,则m⊥n
B.若α∥β,m?α,n?β,则m∥n
C.若m⊥n,m?α,n?β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条不重合的直线和两个不重合的平面,下列命题正确的是(   )
A.若,则
B.若,且,则
C.若,则
D.若,且,则

查看答案和解析>>

同步练习册答案