精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,,,,分别为棱的中点.

(1)求证:∥平面

(2)若异面直线 所成角为,求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】

分析:(1)的中点,连接, ,由棱柱的性质可得,,,再由面面平行的判定得到平面平面∥平面,,则答案得到证明;
(2)由(1)知知异面直线所成角,所以, ,进一步得到平面,,,再由已知求出的长度,把三棱锥的体积转化为 的体积求解.

详解:

(1)证明:取的中点,连接,

因为分别为棱的中点,所以,,

,同理可证,且,平面,

所以平面∥平面

平面,所以∥平面.

(2)由(1)知异面直线所成角,所以,

因为三棱柱为直三棱柱,所以平面,所以平面,

,又,,

.

,,平面,

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数集具有性质对任意的,使得成立.

(1)分别判断数集是否具有性质,并说明理由;

(2)求证:

(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个几何体的主视图与左视图是全等的长方形,边长分别是,如图所示,俯视图是一个边长为的正方形.

(1)求该几何体的表面积;

(2)求该几何体的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某山区小学有100名四年级学生,将全体四年级学生随机按0099编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.

1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;

2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;

3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部 45 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加书法社团

2

30

(1)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;

(2)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学,3名女同学.现从这 5 名男同学和 3 名女同学中各随机选 1 人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.

(1)当点P距O处2百米时,求OQ的长;

(2)当公路PQ的长最短时,求OQ的长.

查看答案和解析>>

同步练习册答案