精英家教网 > 高中数学 > 题目详情

某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

(1)设, 所以

(2)万元时,收益最大,万元.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2a元,而汽车每小时耗油升,司机的工资是每小时14a元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值(a为常数) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
⑴ 若对一切实数x恒成立,求实数a的取值范围。
⑵ 求在区间上的最小值的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知二次函数满足条件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)
(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.
(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数满足.
(1)设,求的上的值域;
(2)设,在上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本小题13分)计算下列各式
(1)                              

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是二次函数,不等式的解集是,且在区间上的最大值是.
(1)求的解析式;
(2)设函数上的最小值为,求的表达式.

查看答案和解析>>

同步练习册答案