精英家教网 > 高中数学 > 题目详情
6.随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ<0)=(  )
A.0.16B.0.32C.0.68D.0.84

分析 根据随机变量X服从正态分布N(2,σ2),看出这组数据对应的正态曲线的对称轴μ=2,根据正态曲线的特点,即可得到结果.

解答 解:∵随机变量X服从正态分布N(2,σ2),
∴μ=2,
∵P(ξ≤4)=0.84,
∴P(ξ≥4)=1-0.84=0.16,
∴P(ξ≤0)=P(ξ≥4)=1-P(ξ≤4)=0.16,
故选:A.

点评 本题考查正态分布以及正态曲线的特点,若一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$.
(1)写出曲线C1与直线l的直角坐标方程;
(2)设Q为曲线C1上一动点,求Q点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某产品单价是120元,可销售80万件,市场调查后发现规律为降价x元后可多销售2x万件,写出销售金额y(万元)与x的函数关系式,并求当降价多少元时,销售金额最大?最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{\sqrt{4-{2}^{x}}}{x}$的定义域为{x|x≤2且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}中,a4+a7=42,则前10项和S10=(  )
A.420B.380C.210D.140

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若i是虚数单位,Z的共轭复数$\overline{Z}$,复数z=$\frac{-1+3i}{1+2i}$,则$\overline Z$在复平面对应的点为(  )
A.(5,5)B.(5,-5)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若tanα=3,tanβ=5,则tan(α-β)的值为$-\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆在一象限交点的直角坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.
(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

同步练习册答案