精英家教网 > 高中数学 > 题目详情
4.某产品单价是120元,可销售80万件,市场调查后发现规律为降价x元后可多销售2x万件,写出销售金额y(万元)与x的函数关系式,并求当降价多少元时,销售金额最大?最大是多少?

分析 利用销售金额=单价×售销量计算即得结论.

解答 解:依题意,0≤x<120,
y=(80+2x)(120-x)=-2(x-40)2+12800(万元),
∴当降价40元时,销售金额最大,为12800万元.

点评 本题考查函数模型的选择与应用,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若|$\overrightarrow{e}$|=1,且$\overrightarrow{a}⊥\overrightarrow{e}$,|$\overrightarrow{a}$|=2,则|4$\overrightarrow{a}-\overrightarrow{e}$|=(  )
A.$\sqrt{37}$B.$\sqrt{65}$C.8D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面中心)的上、下底面边长分别是2cm与4cm,侧棱长是$\sqrt{6}$cm,试求该三棱台的表面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x-1},x<0}\\{x,0<x<1}\\{1,x>1}\end{array}\right.$,求当x→0时,f(x)的左、右极限,并说明当x→0时,函数极限是否存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{{x}^{2}-2x+3}{x}$(x<0)的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数y=f(x)在(-∞,2]上是增函数,在[2,+∞)上是减函数,图象的顶点在直线y=x-1上,并且图象经过点(-1,-8).
(1)求二次函数y=f(x)的解析式;
(2)若f(x)+m<0对x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z=-5+6i,则|z+$\overline{z}$|的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ<0)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案