精英家教网 > 高中数学 > 题目详情
7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,其左焦点F在直线l上.
(1)若直线l与椭圆C交于A,B两点,求|FA|•|FB|的值;
(2)求椭圆C的内接矩形周长的最大值.

分析 (1)将直线l和椭圆C的转化为普通方程,左焦点F在直线l上,求解出直线1方程与椭圆C联立方程组,求解A,B坐标,利用两点之间的距离公式求解|FA|•|FB|的值.(也可以利用参数的几何意义做).
(2)设椭圆在第一象限上一点P(acosθ,bsinθ),内接矩形周长为:L=4(acosθ+bsinθ)=4$\sqrt{{a}^{2}+{b}^{2}}$sin(θ+φ),可得答案.

解答 解:(1)由椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,
可得x2+3y2=12,即$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$.其左焦点为(-2$\sqrt{2}$,0).直线l消去参数t可得:x-y=m,
∵左焦点F在直线l上,
∴直线l方程为:x-y=-2$\sqrt{2}$.
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\\{x-y=-2\sqrt{2}}\end{array}\right.$,解得A($\frac{\sqrt{6}-3\sqrt{2}}{2}$,$\frac{\sqrt{6}+\sqrt{2}}{2}$),B($-\frac{\sqrt{6}+3\sqrt{2}}{2}$,$\frac{\sqrt{2}-\sqrt{6}}{2}$)
那么|FA|•|FB|=2.
法二:几何法:
∵左焦点为(-2$\sqrt{2}$,0).
左焦点F在直线l上,带入参数方程可得:$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,
将直线参数方程带入椭圆x2+3y2=12,可得:t2-2t-2=0.
那么|FA|•|FB|=|t1t2|=2
(2)设椭圆在第一象限上一点P(2$\sqrt{3}$cosθ,2sinθ),($0<θ<\frac{π}{2}$)
内接矩形周长为:L=8$\sqrt{3}$cosθ+8sinθ)=16sin(θ+$\frac{π}{3}$),
∴当$θ=\frac{π}{6}$时,周长取得最大值为为16.
∴椭圆C的内接矩形周长的最大值为16.

点评 本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,设点F1,F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足$\overrightarrow{OP}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在长为3m的线段AB上任取一点P,则点P与线段AB两端点的距离都大于1m的概率等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex-|ln(-x)|的两个零点为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知y=f(x)是R上的偶函数,对于任意的x∈R,均有f(x)=f(2-x),当x∈[0,1]时,f(x)=(x-1)2,则函数g(x)=f(x)-log2017|x-1|的所有零点之和为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x),方程f(x)=x的解称为f(x)的不动点,方程f[f(x)]=x的解称为f(x)的稳定点.
①设函数f(x)的不动点的集合为M,稳定点的集合为N,则M⊆N;
②函数f(x)的稳定点可能有无数个;
③当f(x)在定义域上单调递增时,若x0是f(x)的稳定点,则x0是f(x)的不动点;
上述三个命题中,所有真命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.$[\frac{2}{3},11]$B.[3,11]C.$[\frac{3}{2},11]$D.[1,11]

查看答案和解析>>

同步练习册答案