精英家教网 > 高中数学 > 题目详情

【题目】已知,函数

1讨论的单调性;

(2)当时,设函数表示在区间上最大值与最小值的差,求在区间上的最小值.

【答案】1见解析2

【解析】试题分析:

1)求出导函数 ,其零点为-1,按这两个零点的大小分类讨论的正负,得单调区间;

2时,fx)在区间上单调递增,在区间单调递减,在区间单调递增.对区间,由于,然后按的范围分类讨论得的最值,从而求得,此时可在每一类中求得的最小值,最后比较最小值即得所求.

试题解析:

1因为,所以当 上单调递增单调递减.

2)当时,由(1)知fx)在区间上单调递增,在区间单调递减,在区间单调递增.当时, 在区间上单调递增,在区间上单调递减 因此在区间上最大值是.此时最小值是所以

因为在区间上单调递增所以最小值是

时, 上单调递增

所以

所以

综上在区间上的最小值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为函数的导函数,且.

(1)判断函数的单调性;

(2)若,讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是平面四边形的对角线, ,且.现在沿所在的直线把折起来,使平面平面,如图.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3x2+xa∈R.

(Ⅰ)当a=1时,求fx)在[﹣1,1]上的最大值和最小值;

(Ⅱ)若fx)在区间[,2]上单调递增,求a的取值范围;

(Ⅲ)当m<0时,试判断函数gx)=-其中f′(x)是fx)的导函数)是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:

车速xkm/h

60

70

80

90

100

事故次数y

1

3

6

9

11

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+

(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.

附:==-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,函数,其中为自然对数的底数:

(1)如果函数为偶函数,求实数的值,并求此时函数的最小值;

(2)对满足,且的任意实数,证明函数的图像经过唯一的定点;

(3)如果关于的方程有且只有一个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,在椭圆上.

(1)求椭圆的标准方程;

(2)已知动直线(斜率存在)与椭圆相交于点两点,且的面积,若为线段的中点.点在轴上投影为,问:在轴上是否存在两个定点,使得为定值,若存在求出的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的单调区间;

(2)是否存在实数,使得至少有一个,使成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案