精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=x3x2+xa∈R.

(Ⅰ)当a=1时,求fx)在[﹣1,1]上的最大值和最小值;

(Ⅱ)若fx)在区间[,2]上单调递增,求a的取值范围;

(Ⅲ)当m<0时,试判断函数gx)=-其中f′(x)是fx)的导函数)是否存在零点,并说明理由.

【答案】(Ⅰ), (Ⅱ)(Ⅲ)见解析

【解析】

(Ⅰ)求出的正负判断,从而确定函数的单调性即可求得函数的最值。

(Ⅱ)转化成在区间[,2]恒成立,再参变分离,转化成函数最值问题,利用基本不等式求最值即可。

(Ⅲ)将所求问题化简转化成方程内是否有解,利用导数说明函数的单调性,再由即可判断原函数不存在零点。

(Ⅰ)当时,,

,

.

当x变化时,,f(x)的变化情况如下表:

x

+

0

f(x)

单调递增↗

极大值

单调递减↘

,

.

(Ⅱ)

上是单调递增函数,

上恒成立.

即:.

∴当且仅当时,成立.

(Ⅲ)由题意可知,

要判断是否存在零点,只需判断方程内是否有解,

即要判断方程内是否有解.

,

,

可见,当时,上恒成立.

上单调递减,在上单调递减.

,

内均无零点。

故函数gx)=-无零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,为棱的三等分点(靠近A点).

求证:(1平面

2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为方便金湖县人民游览三河风景区附近的网红桥,现准备在河岸一侧建造一个观景台A,已知射线PM PN为两边夹角为120°的公路(长度均超过5千米),在两条公路PMPN上分别设立游客上下点BC,在观景台A和游客上下点BC之间和游客上下点BC之间分别建造三条观光线路ABACBC,测得PB=3干米,PC=5千米.

1)求线段BC的长度;

2)若∠BAC= 60°,因政府要计算修建三条观光线路所需费用,所以要计算ABACBC三条线路的总长度的取值范围,请你建立合适的数学模型,帮助政府解决这个问题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x-x2)ex-1.

(1)求函数f(x)的单调区间;

(2)若对任意x≥1,都有f(x)-mx-1+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有极值,且函数的极值点是的极值点,其中是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)

(1)求关于的函数关系式;

(2)当时,若函数的最小值为,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1讨论的单调性;

(2)当时,设函数表示在区间上最大值与最小值的差,求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,

)求

)猜想的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市创业园区新引进一家生产环保产品的公司,已知该环保产品每售出1盒的利润为0.3万元,当月未售出的环保产品,每盒亏损0.12万元.根据统计资料,该环保产品的市场月需求量的频率分布直方图如图所示.

1)若该环保产品的月进货量为160盒,以(单位:盒,)表示该产品一个月内的市场需求量,(单位:万元)表示该公司生产该环保产品的月利润.

①将表示为的函数;

②根据频率分布直方图估计利润不少于39.6万元的概率.

2)在频率分布直方图的月需求量分组中,以各组的区间中点值代表该组的月需求量,当月进货量为158箱时,写出月利润(单位:万元)的所有可能值.

查看答案和解析>>

同步练习册答案