精英家教网 > 高中数学 > 题目详情

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

【答案】D

【解析】试题分析:由于αβ垂直于同一平面,则αβ平行,利用正方体的两个相邻侧面不满足题意,故不对;

mn平行于同一平面,则mn平行,可能相交也可能平行也可以异面,故不对;

αβ不平行,则在α内不存在与β平行的直线,利用正方体中点侧面与底面,侧面的上底面的棱与下底面的棱,能够找到平行线,所以不正确;

mn不平行,则mn不可能垂直于同一平面,如果两条直线垂直同一个平面,则两条直线平行,所以正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴端点到焦点的距离为.

(1)求椭圆的方程;

(2)设为椭圆上任意两点,为坐标原点,且.求证:原点到直线的距离为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.040.100.140.280.30,第6小组的频数是7.

1)求进入决赛的人数;

2)经过多次测试后发现,甲成绩均匀分布在810米之间,乙成绩均匀分布在8.510.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与 相交于点 .(道路宽度忽略不计)

(1)若经过圆心,求点的距离;

(2)设 .

①试用表示的长度;

②当为何值时,绿化区域面积之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3x2+xa∈R.

(Ⅰ)当a=1时,求fx)在[﹣1,1]上的最大值和最小值;

(Ⅱ)若fx)在区间[,2]上单调递增,求a的取值范围;

(Ⅲ)当m<0时,试判断函数gx)=-其中f′(x)是fx)的导函数)是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2).在图2中:

(1)求证:平面 平面

2 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:

车速xkm/h

60

70

80

90

100

事故次数y

1

3

6

9

11

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+

(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.

附:==-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力为视力正常, 为视力低下,其中为轻度, 为中度, 为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;

(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?

(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据是宜昌市个普通职工的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数可能不变,中位数可能不变,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数大大增大,中位数一定变大,方差可能不变

查看答案和解析>>

同步练习册答案