【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力
为视力正常,
为视力低下,其中
为轻度,
为中度,
为重度.统计检测结果后得到如图所示的柱状图.
![]()
(1)求该校高一年级轻度近视患病率;
(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?
(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?
【答案】(1)
;(2)135人;(3)
.
【解析】试题分析:
(1)由柱状图计算可得该校高一年级学生轻度近视患病率为
.
(2)由已知计算可得:该校高一年级需通知的家长人数约为
人.
(3)记6名学生中视力正常的学生为
,
,视力低下的学生为
,
,
,
,列出所有可能的基本事件,结合古典概型计算公式可得恰有1人视力正常的概率是
.
试题解析:
(1)由柱状图可得:
,
即该校高一年级学生轻度近视患病率为
.
(2)由已知可得:
(人)
即该校高一年级需通知的家长人数约为135人.
(3)记6名学生中视力正常的学生为
,
,视力低下的学生为
,
,
,
,
则从中任选2人所有可能为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
∴
.
即从这6名学生中任选2人恰有1人为视力正常的概率为
.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室
,
是边长为2的正方形.
![]()
(1)若
,
在
上,四面体
是否为鳖臑,若是,写出其每个面的直角:若不是,请说明理由;
(2)当阳马
的体积最大时,求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
是两条不同直线,
,
是两个不同平面,则下列命题正确的是 ( )
A. 若
,
垂直于同一平面,则
与
平行
B. 若
,则![]()
C. 若
,
不平行,则在
内不存在与
平行的直线
D. 若
,
不平行,则
与
不可能垂直于同一平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
的离心率为
,左焦点
,直线
与椭圆交于
两点,
为椭圆上异于
的点.
![]()
(1)求椭圆
的方程;
(2)若
,以
为直径的圆
过
点,求圆
的标准方程;
(3)设直线
与
轴分别交于
,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,得到如图的频率分布直方图(图1).
![]()
![]()
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到图2中数据,根据表中的数据,能否在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一次骰子,将得到的点数分别记为
.
(1)求直线
与圆
相切的概率;
(2)将
,4的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )
![]()
A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长
B. 2018年第一季度GDP增速由高到低排位第5的是浙江省
C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D. 去年同期河南省的GDP总量不超过4000亿元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com