精英家教网 > 高中数学 > 题目详情
11.$\int_0^π$sinxdx的值为(  )
A.$\frac{π}{2}$B.πC.1D.2

分析 直接利用定积分公式求解即可.

解答 解:$\int_0^π$sinxdx=(-cosx)${|}_{0}^{π}$=-cosπ+cos0=2.
故选:D.

点评 本题考查定积分公式的应用,三角函数求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知定义在(-1,1)上的函数f(x)为减函数,且f(1+a)<f(0),则a的取值范围是(  )
A.(-1,+∞)B.(-1,0)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中:
①α=2kx+$\frac{π}{3}$(k∈Z)是tanα=$\sqrt{3}$的充分不必要条件; 
②已知命题P:?x∈R,lgx=0;
命题Q:?x∈R,2x>0,则P∧Q为真命题; 
③若|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$|$\overrightarrow{a}$|x2+$\overrightarrow{a}$•$\overrightarrow{b}$x在R上有极值,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角范围为[$\frac{π}{3}$,π]; 
④在△ABC中,若cos(2B+C)+2sinAsinB<0,则△ABC为钝角三角形;
 ⑤在△ABC中,若(a2+c2-b2)tanB=$\sqrt{3}$ac,则B=60°.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙、丙三部机床独立工作,由一个工人照管,且一个工人不能同时照管两部或两部以上机床,某段时间内,它们不需要工人照管的概率分别为0.9、0.8和0.85,求在这段时间内,
(1)三部机床都不需要工人照管的概率;
(2)一人照管不过来而造成停工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果定义在(-∞,0)∪(0,+∞)上的奇函数f(x)在(0,+∞)内是减函数,又有f(3)=0,则f(x)>0的解集为(-∞,-3)∪(0,3),x•f(x)<0的解集为(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a=1”是“函数f(x)=x2+2ax-2在区间(-∞,-1]上单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3],且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0.则给出下列命题:
①f(2016)=-2;  
②x=-6为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在(-9,-6)上为减函数; 
④方程f(x)=0在[-9,9]上有4个根;
其中正确的命题个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在区间[-2,4]上随机选取一个数X,则X≤1的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.cos105°cos45°+sin45°sin105°的值(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案