精英家教网 > 高中数学 > 题目详情
2.在△ABC中,A=60°,a=4$\sqrt{3}$,b=4$\sqrt{2}$,求B、C和c.

分析 由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可求得B=45°或135°,由a>b进行判断取舍,再由正弦定理$\frac{c}{sinC}=\frac{a}{sinA}$可求c.

解答 解:由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,
得$\frac{4\sqrt{3}}{sin60°}=\frac{4\sqrt{2}}{sinB}$,
解得sinB=$\frac{\sqrt{2}}{2}$.
∴B=45°或135°.
∵a>b,
∴B=45°.
∴C=180°-(60°+45°)=75°.
$\frac{c}{sinC}=\frac{a}{sinA}$
得$\frac{c}{sin75°}=\frac{4\sqrt{3}}{sin60°}$,
解得c=$2\sqrt{2}+2\sqrt{6}$.
综上B=45°,C=75°,c=$2\sqrt{2}+2\sqrt{6}$.

点评 本题考查正弦定理及其应用,利用正弦定理求出多解时要注意取舍的判断,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知x,y满足(x-2)2+(y-3)2=1,则z=x2+y2的最小值为14-2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在长方体ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,点E是AB的中点.
(1)求三棱锥C-DD1E的体积;
(2)求证:D1E⊥A1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,已知an=11-2n,则使前n项和Sn最大的n值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.水是最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分.为了推动对水资源进行综合性统筹规划和管理,加强水资源保护,解决日益严峻的淡水缺乏问题,开展广泛的宣传以提高公众对开发和保护水资源的认识.中国水利部确定每年的3月22日至28日为“中国水周”,以提倡市民节约用水.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.
(Ⅰ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计该地家庭的平均用水量;
(Ⅱ)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;
(Ⅲ)用X表示在未来3个月里用水量低于12吨的月数,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|0<log4x<1},B={x|x2-4≤0},则A∩B=(  )
A.(0,1)B.(0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于函数f(x)=|sinx|+|cosx|(x∈R),有如下结论:
①函数f(x)的周期是$\frac{π}{2}$;
②函数f(x)的值域是[0,$\sqrt{2}$];
③函数f(x)的图象关于直线x=$\frac{3π}{4}$对称;
④函数f(x)在($\frac{π}{2}$,$\frac{3π}{4}$)上递增.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面几何中,三角形的面积等于其周长的一半与其内切圆半径之积,类比之,在立体几何中,三棱锥的体积等于其表面积的$\frac{1}{3}$与其内切球半径之积(用文字表述)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱柱ABCD-A1B1C1D1,侧面A1ADD1⊥面ABCD,底面ABCD是矩形,且AB=2,AD=1,AA1=$\sqrt{5}$,∠A1AD的余弦值为$\frac{\sqrt{5}}{5}$.
(1)求证:平面A1DCB1⊥平面ABCD;
(2)求BD1与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案