精英家教网 > 高中数学 > 题目详情
16.已知x1,x2,x3是函数f(x)=$\frac{kx}{{e}^{x}}$-lnx+x(k∈R)的三个极值点,且0<x1<x2<x3,有下列四个关于函数f(x)的结论:①k>e2;②x2=1;③f(x1)=f(x3);④f(x)>2恒成立,其中正确的序号为②③④.

分析 f′(x)=$\frac{(x-1)({e}^{x}-kx)}{x{e}^{x}}$,(x>0),记g(x)=ex-kx,g′(x)=ex-k
分k≤1,k>1讨论即可判定①,
又g(1)=e-k<0,可得x1<x2=1<x3,可判定②
由上可得x1,x3是g(x)=0的两个根,即e${\;}^{{x}_{1}}$=kx1,e${\;}^{{x}_{3}}$=kx3
可得f(x1)=$\frac{k{x}_{1}}{{e}^{{x}_{1}}}-ln{x}_{1}+{x}_{1}$=1-ln$\frac{{e}^{{x}_{1}}}{k}+{x}_{1}$=1+lnk,同理f(x3)=1+lnk,可判定③;
由以上推导可得f(x)在(0,x1)递减,在(x1,1)递增,在(1,x3)上递减,在(3,+∞)上递增.
即可得f(x)min=f(x1)=f(x3)=1+lnk>1+lne=2,可判定④.

解答 解:f′(x)=$\frac{(x-1)({e}^{x}-kx)}{x{e}^{x}}$,(x>0),记g(x)=ex-kx,g′(x)=ex-k
当k≤1时,则有x>0⇒g′(x)>e0-k>0⇒g(x)在(0,+∞)上递增,∴g(x)=0至多有一解,⇒f′(x)=0至多有两解,不符合题意.
当k>1时,由g(x)得单调性可知g(x)min=g(lnk)=k-lnk,要使函数f(x)有三个极值点,即f′(x)=0恰有三个不等正实数根,∴g(x)min=k-klnk<0
解得k>e,故①错;
   又∵g(1)=e-k<0,且1是函数f(x)=$\frac{kx}{{e}^{x}}$-lnx+x(k∈R)的一个极值点,∴x1<x2=1<x3,故②正确;
由上可得x1,x3是g(x)=0的两个根,即e${\;}^{{x}_{1}}$=kx1,e${\;}^{{x}_{3}}$=kx3
∴f(x1)=$\frac{k{x}_{1}}{{e}^{{x}_{1}}}-ln{x}_{1}+{x}_{1}$=1-ln$\frac{{e}^{{x}_{1}}}{k}+{x}_{1}$=1+lnk,同理f(x3)=1+lnk,故③正确;
由以上推导可得f(x)在(0,x1)递减,在(x1,1)递增,在(1,x3)上递减,在(3,+∞)上递增.
∴f(x)min=f(x1)=f(x3)=1+lnk>1+lne=2,故④正确.
故答案为:②③④

点评 本题考查了导数与函数的单调性、极值,考查了分类讨论思想、转化思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则其体积为(  )
A.$\frac{3π}{4}$B.$\frac{π+2}{4}$C.$\frac{π+1}{2}$D.$\frac{3π+2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
 x 1 2 3 4
 y 7.06.5  5.5 3.8 2.2
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=Asin(ωx+φ)$({A>0,|φ|<\frac{π}{2}})$部分图象如图,则函数解析式为$y=2sin(\frac{1}{3}x-\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin1470°=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次抽样调査中测得样本的6组数据,得到一个变量y关于x的回归方程模型,其对应的数值如表
x234567
y3.002.482.081.861.481.10
(Ⅰ)请用相关系数r加以说明y与x之间存在线性相关关系(当|r|>0.81时,说明y与x之间具有线性相关关系);
(Ⅱ)根据(I )的判断结果,建立y关于x的回归方程并预测当x=9时,对应的y值为多少(b精确到0.01)
附参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,相关系数r公式为:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=x3+x-a在点P0处的切线平行于直线y=4x,则点P0的横坐标是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的导数.
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将7名留学归国人员分配到甲、乙两地工作,若甲地至少安排3人,乙地至少安排3人,则不同的安排方法数为(  )
A.120B.150C.70D.35

查看答案和解析>>

同步练习册答案