精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图所示,则其体积为(  )
A.$\frac{3π}{4}$B.$\frac{π+2}{4}$C.$\frac{π+1}{2}$D.$\frac{3π+2}{4}$

分析 由已知三视图得到几何体是一个圆锥沿两条母线切去部分后得到的几何体,因此计算体积.

解答 解:由已知三视图得到几何体是一个圆锥沿两条母线切去部分后得到的几何体,体积为$\frac{3}{4}×\frac{1}{3}×π×{1}^{2}×3+\frac{1}{3}×\frac{1}{2}×1×1×3$=$\frac{3π+2}{4}$;
故选D.

点评 本题考查了几何体的三视图;要求对应的几何体体积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列叙述错误的是(  )
A.若事件A发生的概率为 P (A),则 0≤P(A)≤1
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.5 张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
D.某事件发生的概率是随着试验次数的变化而变化的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.远古时代,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是(  )
A.510B.2178C.3570D.15246

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,请回答问题:
若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$(n∈R且n$≠-\frac{1}{2}$),则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=3024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.园林管理处拟在公园某区域规划建设一半径为r米圆心角为θ(弧度)的扇形景观水池,其中O为扇形AOB的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.
(1)当r和θ分别为多少时,可使广场面积最大,并求出最大值;
(2)若要求步道长为105米,则可设计出水池最大面积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$m=\int_0^2{({2x+1})dx}$,则${({\frac{1}{x}+\sqrt{x}})^m}$的展开式中常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,树顶A离地面4.8 m,树上另一点B离地面2.4m,在离地面1.6m的C处看此树,离此树多少m时看A,B的视角最大(  )
A.2.2B.2C.1.8D.1.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,为得到g(x)=Asin(ωx+$\frac{π}{6}$)的图象,可以将f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{12}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x1,x2,x3是函数f(x)=$\frac{kx}{{e}^{x}}$-lnx+x(k∈R)的三个极值点,且0<x1<x2<x3,有下列四个关于函数f(x)的结论:①k>e2;②x2=1;③f(x1)=f(x3);④f(x)>2恒成立,其中正确的序号为②③④.

查看答案和解析>>

同步练习册答案