精英家教网 > 高中数学 > 题目详情
14.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,请回答问题:
若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$(n∈R且n$≠-\frac{1}{2}$),则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=3024.

分析 根据题意,设h(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,m(x)=$\frac{x+n}{2x-1}$,则有g(x)=h(x)+m(x),对于函数h(x),由题意对已知函数求两次导数可得图象关于点($\frac{1}{2}$,1)对称,即h(x)+h(1-x)=2,对于函数m(x)=$\frac{x+n}{2x-1}$,分析可得m(x)+m(1-x)=1;进而分析可得g(x)+g(1-x)=h(x)+m(x)+h(1-x)+m(1-x)=3;又由g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=g($\frac{1}{2017}$)+g($\frac{2016}{2017}$)+g($\frac{2}{2017}$)+g($\frac{2015}{2017}$)+…+g($\frac{1008}{2017}$)+g($\frac{1009}{2017}$),计算可得答案.

解答 解:根据题意,设h(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,m(x)=$\frac{x+n}{2x-1}$,
则g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$=h(x)+m(x),
对于h(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,
则有h′(x)=x2-x+3,h″(x)=2x-1,
令h″(x0)=2x0-1=0,解可得x0=$\frac{1}{2}$,
h($\frac{1}{2}$)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$=1,即函数h(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$的对称中心为($\frac{1}{2}$,1),
则有h(x)+h(1-x)=2;
对于函数m(x)=$\frac{x+n}{2x-1}$,m(1-x)=$\frac{(1-x)+n}{2(1-x)-1}$=$\frac{x-1-n}{2x-1}$,
m(x)+m(1-x)=1,
对于函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$=h(x)+m(x),必有g(x)+g(1-x)=h(x)+m(x)+h(1-x)+m(1-x)=3,
则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=g($\frac{1}{2017}$)+g($\frac{2016}{2017}$)+g($\frac{2}{2017}$)+g($\frac{2015}{2017}$)+…+g($\frac{1008}{2017}$)+g($\frac{1009}{2017}$)=3×$\frac{2016}{2}$=3024;
故答案为:3024.

点评 本题考查函数的求助,涉及导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.求和的过程中使用了倒序相加法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中x5的系数-270,则实数a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则该函数的单调增区间为(  )
A.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z)B.[$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z)
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某研究员为研究某两个变量的相关性,随机抽取这两个变量样本数据如下表:
x0.041 4.8410.24
y1.12.12.33.34.3
若依据表中数据画出散点图,则样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\sqrt{x}$+1附近波动,但由于某种原因表中一个x值被污损,将方程y=$\sqrt{x}$+1作为回归方程,则根据回归方程y=$\sqrt{x}$+1和表中数据可求得被污损数据为(  )
A.-4.32B.1.69C.1.96D.4.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.2+πB.2+3πC.3+$\frac{π}{2}$D.3+3π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某四棱锥的三视图如图所示,该四棱锥的体积为(  )
A.17B.22C.8D.22+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则其体积为(  )
A.$\frac{3π}{4}$B.$\frac{π+2}{4}$C.$\frac{π+1}{2}$D.$\frac{3π+2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α,β,γ是三个平面,m,n是两条直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m⊥α,n⊥β,m∥n,则α∥β
D.若m不垂直平面,则m不可能垂直于平面α内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=Asin(ωx+φ)$({A>0,|φ|<\frac{π}{2}})$部分图象如图,则函数解析式为$y=2sin(\frac{1}{3}x-\frac{π}{6})$.

查看答案和解析>>

同步练习册答案