精英家教网 > 高中数学 > 题目详情
9.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.2+πB.2+3πC.3+$\frac{π}{2}$D.3+3π

分析 由已知三视图画出直观图,根据图中数据计算体积.

解答 解:由三视图得到几何体如图:所以体积为$\frac{1}{2}×\frac{1}{3}×π×{1}^{2}×3+\frac{1}{2}×2×3×1$=$\frac{π}{2}+3$;
故选:C.

点评 本题考查了由三视图求几何体的体积;关键是由三视图正确画出直观图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四面体ABCD中,△ABC是边长为2的正三角形,AD=CD=$\sqrt{2}$,E为BD上一点.
(Ⅰ)证明:平面ACD⊥平面ABC;
(Ⅱ)若二面角D-AE-C的所成角的平面角的余弦值为$\frac{4}{7}$,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,若AC=2$\sqrt{3}$,BC=2,AB=2,则∠C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.远古时代,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是(  )
A.510B.2178C.3570D.15246

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f(2016)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)+f($\frac{1}{2016}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,请回答问题:
若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$(n∈R且n$≠-\frac{1}{2}$),则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=3024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.园林管理处拟在公园某区域规划建设一半径为r米圆心角为θ(弧度)的扇形景观水池,其中O为扇形AOB的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.
(1)当r和θ分别为多少时,可使广场面积最大,并求出最大值;
(2)若要求步道长为105米,则可设计出水池最大面积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,树顶A离地面4.8 m,树上另一点B离地面2.4m,在离地面1.6m的C处看此树,离此树多少m时看A,B的视角最大(  )
A.2.2B.2C.1.8D.1.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表
气温(℃)2016128
用电量(度)14284462
由表中数据得回归直线方程$\widehat{y}$=bx+a中b=-4,预测当气温为4℃时,用电量的度数是(  )
A.62B.64C.76D.77

查看答案和解析>>

同步练习册答案