精英家教网 > 高中数学 > 题目详情
7.已知直线l:x+y-6=0和圆M:x2+y2-2x-2y-2=0,点A在直线l上,若直线AC与圆M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围为[1,5].

分析 设点A的坐标为(x0,6-x0),圆心M到直线AC的距离为d,则d=|AM|sin30°,由直线AC与⊙M有交点,知d=|AM|sin30°≤2,由此能求出点A的横坐标的取值范围.

解答 解:如图,设点A的坐标为(x0,6-x0),
圆心M到直线AC的距离为d,
则d=|AM|sin30°,
∵直线AC与⊙M有交点,
∴d=|AM|sin30°≤2,
∴(x0-1)2+(5-x02≤16,
∴1≤x0≤5,
故答案为[1,5].

点评 本题考查直线和圆的方程的综合运用,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|(4x-1)(5-x)<0},B={x∈Z|-3<x<6},则(∁RA)∩B的元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题p:?x∈R,ex≥1,写出命题p的否定:?x∈R,ex<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设直线3x+4y-5=0与圆C1:x2+y2=9交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧AB上,则圆C2半径的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是$(\frac{1}{{e}^{2}},{e}^{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0)的最小正周期为2π,则f(-$\frac{π}{6}$)=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在${(\frac{a}{x}-\sqrt{\frac{x}{2}})}^{9}$的二项式展开式中,x3的系数是$\frac{9}{4}$,则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知9a=3,lnx=a,则x=$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的程序框图,输出的S=88

查看答案和解析>>

同步练习册答案