精英家教网 > 高中数学 > 题目详情
8.定义在R上的奇函数y=f(x)在(0,+∞)上递增且f($\frac{1}{2}$)=0,则满足f(log${\;}_{\frac{1}{9}}$x)>0的x的集合为(0,$\frac{1}{3}$)∪(1,3).

分析 根据f(x)为定义在R上的奇函数便得,f(x)在(-∞,0)和(0,+∞)上单调递增,再由$f(\frac{1}{2})=0$,从而可得f(x)>0的解集为(-$\frac{1}{2}$,0)∪($\frac{1}{2}$,+∞).

解答 解:f(x)是定义在R上的奇函数,且在(0,+∞)上递增;
∴f(x)在(-∞,0)和(0,+∞)上单调递增,
再由$f(\frac{1}{2})=0$,从而可得f(x)>0的解集为(-$\frac{1}{2}$,0)∪($\frac{1}{2}$,+∞),
∴由$f(lo{g}_{\frac{1}{9}}x)>0$得:${log}_{\frac{1}{9}}x$∈(-$\frac{1}{2}$,0)∪($\frac{1}{2}$,+∞);
∴x∈(0,$\frac{1}{3}$)∪(1,3),
∴原不等式的解集为(0,$\frac{1}{3}$)∪(1,3).
故答案为:(0,$\frac{1}{3}$)∪(1,3).

点评 考查奇函数的定义,奇函数的单调性特点,增函数的定义,以及指数式和对数式的运算,指数函数和对数函数的单调性,对数中的真数大于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax+lnx,x∈[1,+∞)
(1)若f′(x0)=$\frac{f(e)-f(1)}{e-1}$,求x0的值;
(2)若函数f(x)在[1,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:log${\;}_{\root{3}{3}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在命题:①y=2${\;}^{\frac{1}{x-1}}$的值域是(0,+∞);②y=$\sqrt{1-{x}^{2}}$的值域是[0,1];③y=x+$\sqrt{x+3}$的值域[-3,+∞);④y=x+$\sqrt{1-{x}^{2}}$的值域是[-$\sqrt{2}$,$\sqrt{2}$]中,错误命题的个数有(  )
A.1B.3C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2x+2,求函数f(x)在区间[a,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.改革开放以来,我国高等教育事业有了迅速发展.这里我们得到了某省从1990~2000年18~24岁的青年人每年考入大学的百分比.我们把农村、县镇和城市分开统计.为了便于计算,把1990年编号为0,1991年编号为1…2000年编号为10.如果把每年考入大学的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:
城市:$\stackrel{∧}{y}$=2.84x+9.50
县镇:$\stackrel{∧}{y}$=2.32x+6.76;
农村:$\stackrel{∧}{y}$=0.42x+1.80;
(1)在同一个坐标系内作出三条回归直线.
(2)对于农村青年来讲,系数等于0.42意味着什么?
(3)在这一阶段,三个组哪一个的大学入学率年增长最快?
(4)请查阅我国人口分布的有关资料,选择一个高等教育发展上有代表性的省,以这个省的大学入学率作为样本,说明我国在1991~2000年10年间大学入学率的总体发展情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=lnx-ax
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线l与曲线C:ρ=-2cosθ相切,求a的值;
(Ⅱ) 求f(x)的在(0,1]上的最大值.(本题极点在坐标原点,极轴为X轴)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线为y=-12x.
(1)求f(x)的解析式;
(2)求f(x)在[-3,1]上的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线的焦点F在x轴的正半轴上,A(m,-3)在抛物线上,且|AF|=5,求抛物线的标准方程y2=2x,或y2=18x.

查看答案和解析>>

同步练习册答案